‘壹’ 写一个51单片机模拟SPI总线的代码
这是我复制的,一搜一大堆
#include <reg52.h>
sbit SPI_DI =P0^1; //MMC数据输入
sbit SPI_DO =P0^0;//MMC数据输出,可不接
sbit SPI_SCL=P0^2;//时钟线
void Write_Byte(unsigned char value)
{
unsigned char i;
for (i=0;i<8;i++)
{
if (((value>>(7-i))&0x01)==0x01)
SPI_DI=1;
else SPI_DI=0;
SPI_SCL=0;
delay(5);
//必须要加延时,否则会因为操作太快而不响应。
SPI_SCL=1;
delay(5);
//必须要加延时,否则会因为操作太快而不响应。
}
}
unsigned char Read_Byte()
{
unsigned char temp=0;
unsigned char i;
for (i=0;i<8;i++)
{
SPI_DO=1;
SPI_SCL=0;
delay(5);
temp=(temp<<1)+(unsigned char)SPI_DO;
SPI_SCL=1;
delay(5);
}
return (temp);
}
‘贰’ 关于51单片机SPI通信的几个问题
初始化中对SPCTL操作来设置SPI的速率和工作方式
SPCTL = 0x4C; //设置SPI口工作方式为1主多从中的从
AUXR = 0x08; //开SPI中断
中断函数,SPI同LVDI共享中断5
void SPI_Interrupt(void) interrupt 5
{
SPSTAT = 0xC0; //向SPIF和WCOL写入1使其清零
DataBuffer[count++] = SPDAT;
return;
}
1. STC的SPI口发送完以后保持不变。
2. 每次通信(包括输入或者输出)以后SPIF都会自动置位,用来产生中断(如果允许的话)
3. 简单的历程看上面,自己修改加自己的工程里
‘叁’ 求51单片机通过I/O口模拟spi实现双机通信的c语言代码
#include <reg52.h>
#include <intrins.h>
#define MODE 0 //MODE=1时 为发送代码 MODE=0时 为接收代码
typedef unsigned char uchar;
//****************************************IO端口定义***************************************
sbit MISO =P1^2;
sbit MOSI =P1^3;
sbit SCK =P1^1;
sbit CE =P1^0;
sbit CSN =P3^2;
sbit IRQ =P3^3;
//******************************************************************************************
uchar bdata sta; //状态标志
sbit RX_DR =sta^6;
sbit TX_DS =sta^5;
sbit MAX_RT =sta^4;
//*********************************************NRF24L01*************************************
#define TX_ADR_WIDTH 5 // 5 uints TX address width
#define RX_ADR_WIDTH 5 // 5 uints RX address width
#define TX_PLOAD_WIDTH 32 // 32 uints TX payload
#define RX_PLOAD_WIDTH 32 // 32 uints TX payload
uchar const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //本地地址
uchar const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //接收地址
uchar code Tx_Buf[TX_PLOAD_WIDTH]={0xff,0xee,0x11,0x22,0x33,0xaa,0xbb,0x11,0x22,0x33,0xaa,0xbb,0x11,0x22,
0x33,0xaa,0xbb,0x11,0x22,0x33,0xaa,0xbb,0x11,0x22,0x33,0xaa,0xbb,0x11,0x22,0x33,0xee,0xff};//发送数据
uchar Rx_Buf[RX_PLOAD_WIDTH];//接收数据
//***************************************NRF24L01寄存器指令*******************************************************
#define READ_REG 0x00 // 读寄存器指令
#define WRITE_REG 0x20 // 写寄存器指令
#define RD_RX_PLOAD 0x61 // 读取接收数据指令
#define WR_TX_PLOAD 0xA0 // 写待发数据指令
#define FLUSH_TX 0xE1 // 冲洗发送 FIFO指令
#define FLUSH_RX 0xE2 // 冲洗接收 FIFO指令
#define REUSE_TX_PL 0xE3 // 定义重复装载数据指令
#define NOP 0xFF // 保留
//*************************************SPI(nRF24L01)寄存器地址****************************************************
#define CONFIG 0x00 // 配置收发状态,CRC校验模式以及收发状态响应方式
#define EN_AA 0x01 // 自动应答功能设置
#define EN_RXADDR 0x02 // 可用信道设置
#define SETUP_AW 0x03 // 收发地址宽度设置
#define SETUP_RETR 0x04 // 自动重发功能设置
#define RF_CH 0x05 // 工作频率设置
#define RF_SETUP 0x06 // 发射速率、功耗功能设置
#define STATUS 0x07 // 状态寄存器
#define OBSERVE_TX 0x08 // 发送监测功能
#define CD 0x09 // 地址检测
#define RX_ADDR_P0 0x0A // 频道0接收数据地址
#define RX_ADDR_P1 0x0B // 频道1接收数据地址
#define RX_ADDR_P2 0x0C // 频道2接收数据地址
#define RX_ADDR_P3 0x0D // 频道3接收数据地址
#define RX_ADDR_P4 0x0E // 频道4接收数据地址
#define RX_ADDR_P5 0x0F // 频道5接收数据地址
#define TX_ADDR 0x10 // 发送地址寄存器
#define RX_PW_P0 0x11 // 接收频道0接收数据长度(1到32字节)
#define RX_PW_P1 0x12 // 接收频道1接收数据长度
#define RX_PW_P2 0x13 // 接收频道2接收数据长度
#define RX_PW_P3 0x14 // 接收频道3接收数据长度
#define RX_PW_P4 0x15 // 接收频道4接收数据长度
#define RX_PW_P5 0x16 // 接收频道5接收数据长度
#define FIFO_STATUS 0x17 // FIFO栈入栈出状态寄存器设置
/******************************************延时函数********************************************************/
//长延时
void Delay(unsigned int s)
{
unsigned int i,j;
for(i=0;i<1000;i++)for(j=0;j<s;j++);
}
//短延时
void delay_ms(unsigned int x)
{
unsigned int i,j;
i=0;
for(i=0;i<x;i++)
{
j=108;;
while(j--);
}
}
/************************************IO 口模拟SPI总线 代码************************************************/
uchar SPI_RW(uchar byte)
{
uchar bit_ctr;
for(bit_ctr=0;bit_ctr<8;bit_ctr++)
{
MOSI=(byte&0x80);
byte=(byte<<1);
SCK=1;
byte|=MISO;
//led=MISO;Delay(150);
SCK=0;
}
return(byte);
}
uchar SPI_RW_Reg (uchar reg,uchar value) // 向寄存器REG写一个字节,同时返回状态字节
{
uchar status;
CSN=0;
status=SPI_RW(reg);
SPI_RW(value);
CSN=1;
return(status);
}
uchar SPI_Read (uchar reg )
{
uchar reg_val;
CSN=0;
SPI_RW(reg);
reg_val=SPI_RW(0);
CSN=1;
return(reg_val);
}
uchar SPI_Write_Buf(uchar reg, uchar *pBuf, uchar bytes)
{
uchar status,byte_ctr;
CSN = 0; // Set CSN low, init SPI tranaction
status = SPI_RW(reg); // Select register to write to and read status byte
for(byte_ctr=0; byte_ctr<bytes; byte_ctr++) // then write all byte in buffer(*pBuf)
SPI_RW(*pBuf++);
CSN = 1; // Set CSN high again
return(status); // return nRF24L01 status byte
}
#if MODE
/*******************************发*****送*****模*****式*****代*****码*************************************/
void TX_Mode(void)
{
CE=0;
SPI_RW_Reg(FLUSH_TX,0x00);
SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // Writes TX_Address to nRF24L01
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // RX_Addr0 same as TX_Adr for Auto.Ack
SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // Enable Auto.Ack:Pipe0
SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // Enable Pipe0
SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0x1a); // 500us + 86us, 10 retrans...1a
SPI_RW_Reg(WRITE_REG + RF_CH, 40); // Select RF channel 40
SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); // TX_PWR:0dBm, Datarate:1Mbps, LNA:HCURR
SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); //设置接收数据长度,本次设置为2字节
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e);
CE=1;
delay_ms(100);
}
void Transmit(unsigned char * tx_buf)
{
CE=0; //StandBy I模式
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 装载接收端地址
SPI_RW_Reg(FLUSH_TX,0x00);
SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH); // 装载数据
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // IRQ收发完成中断响应,16位CRC,主发送
CE=1; //置高CE,激发数据发送
delay_ms(150);
}
#else
/*******************************接*****收*****模*****式*****代*****码*************************************/
uchar SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uchar status,uchar_ctr;
CSN = 0; // Set CSN low, init SPI tranaction
status = SPI_RW(reg); // Select register to write to and read status uchar
for(uchar_ctr=0;uchar_ctr<uchars;uchar_ctr++)
pBuf[uchar_ctr] = SPI_RW(0); //
CSN = 1;
return(status); // return nRF24L01 status uchar
}
/******************************************************************************************************/
/*函数:unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)
/*功能:数据读取后放如rx_buf接收缓冲区中
/******************************************************************************************************/
unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)
{
unsigned char revale=0;
sta=SPI_Read(STATUS); // 读取状态寄存其来判断数据接收状况
if(RX_DR) // 判断是否接收到数据
{
//CE = 0; //SPI使能
SPI_Read_Buf(RD_RX_PLOAD,rx_buf,RX_PLOAD_WIDTH);// read receive payload from RX_FIFO buffer
revale =1; //读取数据完成标志
//Delay(100);
}
SPI_RW_Reg(WRITE_REG+STATUS,sta); //接收到数据后RX_DR,TX_DS,MAX_PT都置高为1,通过写1来清楚中断标志
return revale;
}
/****************************************************************************************************/
/*函数:void RX_Mode(void)
/*功能:数据接收配置
/****************************************************************************************************/
void RX_Mode(void)
{
CE=0;
SPI_RW_Reg(FLUSH_RX,0x00);
//SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // Writes TX_Address to nRF24L01
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // RX_Addr0 same as TX_Adr for Auto.Ack
SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // Enable Auto.Ack:Pipe0
SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // Enable Pipe0
//SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0x1a); // 500us + 86us, 10 retrans...1a
SPI_RW_Reg(WRITE_REG + RF_CH, 40); // Select RF channel 40
SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); //设置接收数据长度,本次设置为2字节
SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); // TX_PWR:0dBm, Datarate:1Mbps, LNA:HCURR
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0F);
CE=1;
delay_ms(130);
}
//************************************串口初始化*********************************************************
void StartUART( void )
{ //波特率9600
SCON = 0x50;
TMOD = 0x20;
TH1 = 0xFD;
TL1 = 0xFD;
PCON = 0x00;
TR1 = 1;
}
//************************************通过串口将接收到数据发送给PC端**************************************
void R_S_Byte(uchar R_Byte)
{
SBUF = R_Byte;
while( TI == 0 ); //查询法
TI = 0;
}
#endif
//************************************主函数************************************************************
void main()
{
int i=0;
CE=0;
SCK=0;
CSN=1;
P1=0x00;
#if MODE //发送 模式代码
TX_Mode();
//SPI_RW_Reg(FLUSH_RX,0x00);
while(1)
{
Transmit(Tx_Buf);
Delay(10);
sta=SPI_Read(READ_REG + STATUS);
if(TX_DS)
{
P1=sta; //8位LED显示当前STATUS状态 发送中断应使bit5 = 1 灯灭
Delay(100);
SPI_RW_Reg(WRITE_REG + STATUS,sta);
}
if(MAX_RT) //如果是发送超时
{
P1=0x0f; //发送超时时 8位LED灯 bit4 = 1 灯灭
Delay(150);
SPI_RW_Reg(WRITE_REG + STATUS,sta);
}
}
#else //接收 模式代码
StartUART();
RX_Mode();
Delay(0);//防止编译警告
while(1)
{
if(nRF24L01_RxPacket(Rx_Buf))
{
for(i=0;i<TX_PLOAD_WIDTH;i++)
R_S_Byte(Rx_Buf[i]);
}
}
#endif
}
‘肆’ 关于用51单片机的IO口模拟SPI驱动NRF2401模块,nrf的CE,CSN和IRQ怎么与单片机IO口连
I/O口相连,首先要电压相等,3V不能直接5V。电压不相等,要在中间串电阻。具体接法,就看你I/O口的定义了。
‘伍’ 怎么用51单片机在SD卡中用SPI模式写出txt文件
那要用到FAT文件系统,光这个就够你看的了。
传统51跑不起来的,光是RAM就不够,SD卡一个扇区就512个字节。
如果用大RAM的51可以,比如C8051F之类,先实现底层的驱动,然后移植文件系统,比如FATFS,用他的f_write就可以了。
FATFS的资料比较多,先了解一下大概,其余的自己去找:
http://blog.csdn.net/laorenshen/archive/2010/04/13/5480499.aspx
虽然那个FAT文件系统不是必须要学的,因为这个FATFS都帮你做了,但你还是有点心理准备为好,这东西没点编程、单片机的经验不是那么好做的。
‘陆’ 51单片机能利用三线SPI总线吗
可以的,对于没有SPI接口的51单片机,可以用两个IO口来模拟SPI时序,也可以用三根线来模拟,三根线时,数据的收发共用一个IO口,即直接将MOSI和MISO短接一起后接单片机的一个普通IO口,有的厂商建议接两个引脚中间接一个数千欧的电阻后连接在一起