⑴ ppsspp安卓版怎么用
首先,下载好ppsspp后,安卓用户直接安装,(iphone用户即ios版先越狱再说)安装完后。
接下来,下载psp游戏,楼主可以去电玩巴士下载游戏,或玩家网,等知名网站进行游戏下载,下载完游戏后,得到的是一个压缩包,之后把其解压,得到xxx.iso或xxx,cso的解压包。
把下载到的游戏包,即(xxx.iso或xxx.cso)复制到手机内存卡的任何一个地方即可,打开模拟器,找到游戏路径即可开始游戏。
游戏存档就放在内存卡的psp/SVEDATA里面。金手指就在ppsspp开启此功能之后,在内存卡就会生成cheats文件,里面会出现相应游戏的ini文件,把金手指代码复制进去,进游戏开启即可进行游戏作弊。
⑵ 如何利用PSP模拟器在安卓手机上玩PSP游戏
您可以参考以下方法/步骤:
1.打开你的电脑的浏览器,地址栏输入【工具原料】里面提供地址,如下图所示按照提示要求下载好安卓模拟器。
拓展资料
android SDK自带一个移动模拟器。它是一个可以运行在你电脑上的虚拟设备。 Android模拟器可以让你不需使用物理设备即可预览、开发和测试Android应用程序。
Android模拟器能够模拟除了接听和拨打电话外的所有移动设备上的典型功能和行为。Android模拟器提供了大量的导航和控制键,你可以通过鼠标或键盘点击这些按键来为你的应用程序产生事件。同时它还有一个屏幕用于显示Android自带应用程序和你自己的应用程序。
为了便于模拟和测试应用程序,Android模拟器允许你的应用程序通过Android平台服务调用其他程序、访问网络、播放音频和视频、保存和传输数据、通知用户、渲染图像过渡和场景。
Android模拟器同样具有强大的调试能力,例如能够记录内核输出的控制台、模拟程序中断(比如接受 短信或打入电话)、模拟数据通道中的延时效果和遗失。下面的章节将提供关于模拟器的详细信息,以及如何在开发应用程序中使用模拟器。
⑶ “Android渲染”图像是怎样显示到屏幕上的
我们每天花很多时间盯着手机屏幕,不知道你有没有好奇过:
这时候来了一位Android程序员(当然也可以是iOS或者是前端程序员)说: 这里显示的其实是一个View树,我们看到的都是大大小小的View。
。。。听起来很有道理,我们也经常指着屏幕说这个View怎么怎么样,可问题又来了:
程序员老兄又来了: 屏幕当然不能识别View,它作为一个硬件,只能根据收到的数据改变每个像素单元的数据,这样整体来看,用户就发现屏幕上的内容变化了。至于View的内容是如何一步一步转化成屏幕可是识别的数据的,简单讲可以分成三步:
。。。听起来很有道理,可问题又来了:
那可就说来话长了。。。
对于 measure layout 和 draw ,Android工程师(大都)非常熟悉,我们常常在执行了 onDraw() 方法后,一个让人自豪的自定义View就显示出来了。在实际的Android绘制流程中,第一步就是通过 measure layout 和 draw 这些步骤准备了下面的材料:
在Android的绘制中,我们使用Canvas API进行来告诉表示画的内容,如 drawCircle() drawColor() drawText() drawBitmap() 等,也是这些内容最终呈现在屏幕上。
在当前应用中,View树中所有元素的材料最终会封装到 DisplayList 对象中(后期版本有用 RenderNode 对 DisplayList 又做了一层封装,实现了更好的性能),然后发送出去,这样第一阶段就完成了。
当然就有一个重要的问题:
会将Bitmap复制到下一个阶段(准确地讲就是复制到GPU的内存中)。
现在大多数设备使用了GPU硬件加速,而GPU在渲染来自Bitmap的数据时只能读取GPU内存中的数据, 所以需要赋值Bitmap到GPU内存,这个阶段对应的名称叫 Sync&upload 。另外,硬件加速并不支持所有Canvas API,如果自定义View使用了不支持硬件加速的Canvas API(参考 Android硬件加速文档 ),为了避免出错就需要对View进行软件绘制,其处理方式就是生成一个Bitmap,然后复制到GPU进行处理。
这时可能会有问题:如果Bitmap很多或者单个Bitmap尺寸很大,这个过程可能会时间比较久,那有什么办法吗?
当然有(做作。。。)
关于Bitmap这里再多说一句:
Bitmap的内存管理一直是Android程序员很关心的问题,毕竟它是个很占内存的大胖子,在Android3.0~Android7.0,Bitmap内存放在Java堆中,而android系统中每个进程的Java堆是有严格限制的,处理不好这些Bitmap内存,容易导致频繁GC,甚至触发Java堆的 OutOfMemoryError 。从Android8.0开始,bitmap的像素数据放入了native内存,于是Java Heap的内存问题暂时缓解了。
Tip:
现在材料已经备好,我们要真正地画东西了。
接下来就要把东西画出来了,画出来的过程就是把前面的材料转化成一个堆像素数据的过程,也叫 栅格化 ,那这个活儿谁来干呢?
候选人只有两个:
大部分情况下,都是GPU来干这个活儿,因为GPU真的特别快!!!
所谓的“画”,对于计算机来讲就是处理图像,其实就是根据需要(就是DisplayList中的命令)对数据做一些特定类型的数学运算,最后输出结果的过程。我们看到的每一帧精美界面,(几乎)都是GPU吭哧吭哧"算"出来的,这个就有疑问了:
我们简单地聊聊CPU与GPU的区别:
CPU的核心数通常是几个,单个核心的主频高,功能强大,擅长串行处理复杂的流程;
GPU ( Graphics Processing Unit ) 有成百上千个核心,单个核心主频低,功能有限,擅长(利用超多核心)大量并行简单运算;正如它的名字一样,GPU就是为图像绘制这个场景量身定做的硬件(所以使用GPU也叫硬件加速),后来也被用到挖矿和神经网络中。
图片肯定没有视频直观,我们从感性的角度感受一下GPU到底有多快,我想下面的视频看过就不会忘掉,你会被GPU折服:
Mythbusters Demo GPU versus CPU
看这个视频,我们对于“加速”应该有了更深刻的印象,这里不再进一步分析CPU和GPU更微观的差别(因为不懂),我想已经讲明白为什们GPU更快了。
另外,在GPU开始绘制之前,系统也做了一些优化(对DisplayList中的命令进行预处理),让整个绘制流程更加高效:
第二步的具体过程还是很复杂的,比如涉及到Alpha绘制,相关的优化会失效,详情查看文章 为什么alpha渲染性能低 .
至于画在哪里,我们现在理解为一个缓冲(Buffer)中就可以了,具体的机制放在第三步讲。
到此,我们已经画(绘制)完了图像内容,把这个内容发送出去,第二步的任务就完成了。
Tip:
我们知道,除了我们的应用界面,手机屏幕上同时显示着其他内容,比如SystemUI(状态栏、导航栏)或者另外的悬浮窗等,这些内容都需要显示到屏幕上。所以要先 把这些界面的内容合成,然后再显示到屏幕 。
在讲合成图像之前,我们有必要知道这些界面图像(Buffer)是怎么传递的:
Android图形架构中,使用生产者消费者模型来处理图像数据,其中的图像缓冲队列叫 BufferQueue , 队列中的元素叫 Graphic Buffer ,队列有生产者也有消费者;每个应用通常会对应一个 Surface ,一个 Surface 对应着一个缓冲队列,每个队列中 Graphic Buffer 的数量不超过3个, 上面两步后绘制的图像数据最终会放入一个 Graphic Buffer ,应用自身就是队列的生产者( BufferQueue 在Android图形处理中有广泛的应用,当前只讨论界面绘制的场景)。
每个 Graphic Buffer 本身体积很大,在从生产者到消费者的传递过程中不会进行复制的操作,都是用匿名共享内存的方式,通过句柄来跨进程传递。
我们可以通过以下命令来查看手机当前用到的 Graphic Buffer 情况:
关于上面的命令,你可能会好奇这个 SurfaceFlinger 是什么东西啊?
上文提到过每个应用(一般)对应一个 Surface ,从字面意思看, SurfaceFlinger 就是把应用的 Surface 投射到目的地。
实际上, SurfaceFlinger 就是界面(Buffer)合成的负责人,在应用界面绘制的场景, SurfaceFlinger 充当了 BufferQueue 的消费者。绘制好的 Graphic Buffer 会进入(queue)队列, SurfaceFlinger 会在合适的时机(这个时机下文讨论),从队列中取出(acquire)Buffer数据进行处理。
我们知道,除了我们的应用界面,手机屏幕上同时显示着其他内容,比如SystemUI(状态栏、导航栏)或者另外的悬浮窗等,这些部分的都有各自的Surface,当然也会往对应的 BufferQueue 中生产 Graphic Buffer 。
如下图所示, SurfaceFlinger 获取到所有Surface的最新Buffer之后,会配合HWComposer进行处理合成,最终把这些Buffer的数据合成到一个 FrameBuffer 中,而FrameBuffer的数据会在另一个合适的时机(同样下文讨论)迅速地显示到屏幕上,这时用户才观察到屏幕上的变化。
关于上图中的 HWComposer ,它是Android HAL接口中的一部分,它定义了上层需要的能力,让由硬件提供商来实现,因为不同的屏幕硬件差别很大,让硬件提供商驱动自己的屏幕,上层软件无需关心屏幕硬件的兼容问题。
事实上,如果你观察足够仔细的话,可能对上图还有疑问:
同学你观察很仔细(...),事实上,这是 SurfaceFlinger 合成过程中重要的细节,对于不同 Surface 的Buffer, 合成的方法有两种:
显然第一种方法是最高效的,但为了保证正确性,Android系统结合了两种方法。具体实现上, SurfaceFlinger 会询问( prepare ) HWComposer 是否支持直接合成,之后按照结果做对应处理。
有的朋友憋不住了:
Good question! (太做作了。。。)
为了保证最好的渲染性能,上面各个步骤之间并不是串行阻塞运行的关系,所以有一个机制来调度每一步的触发时机,不过在此之前,我们先讲介绍一个更基础的概念:
屏幕刷新率
刷新率是屏幕的硬件指标,单位是Hz(赫兹),意思是屏幕每秒可以刷新的次数。
回到问题,既然屏幕这个硬件每隔一段时间(如60Hz屏幕是16ms)就刷新一次,最佳的方案就是屏幕刷新时开始新一轮的绘制流程,让一次绘制的流程尽可能占满整个刷新周期,这样掉帧的可能性最小。基于这样的思考,在Android4.1(JellyBean)引入 VSYNC(Vertical Synchronization - 垂直同步信号)
收到系统发出的VSYNC信号后, 有三件事会同时执行(并行) :
下图描述了没有掉帧时的VSYNC执行流程,现在我们可以直接回答问题了: 合适的时机就是VSYNC信号 。
从上图可以看出,在一次VSYNC信号发出后,屏幕立即显示2个VSYNC周期(60Hz屏幕上就是32ms)之前开始绘制的图像,这当然是延迟,不过这个延迟非常稳定, 只要前面的绘制不掉链子 ,界面也是如丝般顺滑。当然,Android还是推出一种机制让延迟可以缩小到1个VSYNC周期,详情可参考 VSYNC-offset 。
实际上,系统只会在需要的时候才发出VSYNC信号,这个开关由SurfaceFlinger来管理。应用也只是在需要的时候才接收VSYNC信号,什么时候需要呢?也就是应用界面有变化,需要更新了,具体的流程可以参考 View.requestLayout() 或 View.invalidate() 到 Choreographer (编舞者)的调用过程。这个过程会注册一次VSYNC信号,下一次VSYNC信号发出后应用就能收到了,然后开始新的绘制工作;想要再次接收VSYNC信号就需要重新注册,可见,应用界面没有改变的时候是不会进行刷新的。
我们可以看到,无论是VSYNC开关,还是应用对VSYNC信号的单次注册逻辑,都是秉承着按需分配的原则,这样的设计能够带来Android操作系统更好的性能和更低的功耗。
Tip:
终于。。。说完了
我们简单回顾一下,
更形象一点就是:
之所以有这一节,是因为随着Android版本的更替,渲染方案也发生了很多变化。为了简化表达,我们前文都以当前最新的方案来讲解,事实上,部分流程的实现方式在不同版本可能会有较大的变化,甚至在之前版本没有实现方案,这里我尽可能详细地列出Android版本更迭过程中与渲染相关的更新(包括监控工具)。
如果你居然能读到这里,那我猜你对下面的参考文章也会感兴趣:
https://source.android.com/devices/graphics
https://hencoder.com/tag/hui-/
https://www.youtube.com/watch?v=wIy8g8yNhNk&feature=emb_logo
https://www.youtube.com/watch?v=v9S5EO7CLjo
https://www.youtube.com/watch?v=zdQRIYOST64&t=177s
https://www.youtube.com/watch?v=we6poP0kw6E&index=64&list=
https://developer.android.com/topic/performance/rendering
https://developer.android.com/guide/topics/graphics/hardware-accel
https://developer.android.com/topic/performance/rendering/profile-gpu#su
https://mp.weixin.qq.com/s/0OOSmrzSkjG3cSOFxWYWuQ
Android Developer Backstage - Android Rendering
Android Developer Backstage - Graphics Performance
https://elinux.org/images/2/2b/Android_graphics_path--chis_simmonds.pdf