A. linux中断 异常 系统调用 中断上半部 中断下半部 这些有什么区别和联系
中断分软中断跟硬中断,硬中断是由硬件从外部触发,软中断由软件触发,就像linux系统调用int 80一样。至于中断的上下部其实就是因为中断的处理时间跟它的优先级不一定成正比,所以一般先处理中断最重要的部分(上半部),待到不怎么忙的时候,再来处理比较悠闲的部分(下半部)。就像输入的时候,拿到键盘输入的是什么才是最重要的(上半部),显示字符才是次要的(下半部)。
B. Linux-怎么理解软中断
中断是系统用来响应硬件设备请求的一种机制,它会打断进程的正常调度和执行,然后调用内核中的中断处理程序来响应设备的请求。
你可能要问了,为什么要有中断呢?我可以举个生活中的例子,让感受一下中断的魅力。
比如你订了一份外卖,但是不确定外卖什么时候送到,也没有别的方法了解外卖的进度,但是,配送员送外卖是不等人的,到了你这儿没人取的话,就直接走人了,所以你只能苦苦等着,时不时去门口看看外卖送到没,而不能干其他事情。
不过呢,如果在订外卖的时候,你就跟配送员约定好,让他送到后给你打个电话,那你就不用苦苦等待了,就可以去忙别的事情,直到电话一响,接电话、取外卖就可以了。
这里的“打电话”,其实就是一个中断。没接到电话的时候,你可以做其他的事情;只有接到了电话(也就是发生中断),你才要进行另一个动作:取外卖。
这个例子你就可以发现, 中断其实是一种异步的事件处理机制,可以提高系统的并发处理能力。
由于中断处理程序会打断其他进程的运行,所以, 为了减少对正常进程运行调度的影响,中断处理程序就需要尽可能快地运行。 如果中断本身要做的事情不多,那么处理起来也不会有太大问题;但如果中断要处理的事情很多,中断服务程序就有可能要运行很长时间。
特别是,中断处理程序在响应中断时,还会临时关闭中断。这就会导致上一次中断处理完成之前,其他中断都不能响应,也就是说中断有可能会丢失。
那么还是以取外卖为例。假如你订了 2 份外卖,一份主食和一份饮料,并且是由 2 个不同的配送员来配送。这次你不用时时等待着,两份外卖都约定了电话取外卖的方式。但是,问题又来了。
当第一份外卖送到时,配送员给你打了个长长的电话,商量发票的处理方式。与此同时,第二个配送员也到了,也想给你打电话。
但是很明显,因为电话占线(也就是关闭了中断响应),第二个配送员的电话是打不通的。所以,第二个配送员很可能试几次后就走掉了(也就是丢失了一次中断)。
如果你弄清楚了“取外卖”的模式,那对系统的中断机制就很容易理解了。事实上,为了解决中断处理程序执行过长和中断丢失的问题,Linux 将中断处理过程分成了两个阶段,也就是 上半部和下半部:
比如说前面取外卖的例子,上半部就是你接听电话,告诉配送员你已经知道了,其他事儿见面再说,然后电话就可以挂断了;下半部才是取外卖的动作,以及见面后商量发票处理的动作。
这样,第一个配送员不会占用你太多时间,当第二个配送员过来时,照样能正常打通你的电话。
除了取外卖,我再举个最常见的网卡接收数据包的例子,让你更好地理解。
网卡接收到数据包后,会通过 硬件中断 的方式,通知内核有新的数据到了。这时,内核就应该调用中断处理程序来响应它。你可以自己先想一下,这种情况下的上半部和下半部分别负责什么工作呢?
对上半部来说,既然是快速处理,其实就是要把网卡的数据读到内存中,然后更新一下硬件寄存器的状态(表示数据已经读好了),最后再发送一个 软中断 信号,通知下半部做进一步的处理。
而下半部被软中断信号唤醒后,需要从内存中找到网络数据,再按照网络协议栈,对数据进行逐层解析和处理,直到把它送给应用程序。
所以,这两个阶段你也可以这样理解:
实际上,上半部会打断 CPU 正在执行的任务,然后立即执行中断处理程序。而下半部以内核线程的方式执行,并且每个 CPU 都对应一个软中断内核线程,名字为 “ksoftirqd/CPU 编号”,比如说, 0 号 CPU 对应的软中断内核线程的名字就是 ksoftirqd/0。
不过要注意的是,软中断不只包括了刚刚所讲的硬件设备中断处理程序的下半部,一些内核自定义的事件也属于软中断,比如内核调度和 RCU 锁(Read-Copy Update 的缩写,RCU 是 Linux 内核中最常用的锁之一)等。
不知道你还记不记得,前面提到过的 proc 文件系统。它是一种内核空间和用户空间进行通信的机制,可以用来查看内核的数据结构,或者用来动态修改内核的配置。其中:
运行下面的命令,查看 /proc/softirqs 文件的内容,你就可以看到各种类型软中断在不同 CPU 上的累积运行次数:
在查看 /proc/softirqs 文件内容时,你要特别注意以下这两点。
第一,要注意软中断的类型,也就是这个界面中第一列的内容。从第一列你可以看到,软中断包括了 10 个类别,分别对应不同的工作类型。比如 NET_RX 表示网络接收中断,而 NET_TX 表示网络发送中断。
第二,要注意同一种软中断在不同 CPU 上的分布情况,也就是同一行的内容。正常情况下,同一种中断在不同 CPU 上的累积次数应该差不多。比如这个界面中,NET_RX 在 CPU0 和 CPU1 上的中断次数基本是同一个数量级,相差不大。
不过你可能发现,TASKLET 在不同 CPU 上的分布并不均匀。TASKLET 是最常用的软中断实现机制,每个 TASKLET 只运行一次就会结束 ,并且只在调用它的函数所在的 CPU 上运行。
因此,使用 TASKLET 特别简便,当然也会存在一些问题,比如说由于只在一个 CPU 上运行导致的调度不均衡,再比如因为不能在多个 CPU 上并行运行带来了性能限制。
另外,刚刚提到过,软中断实际上是以内核线程的方式运行的,每个 CPU 都对应一个软中断内核线程,这个软中断内核线程就叫做 ksoftirqd/CPU 编号。那要怎么查看这些线程的运行状况呢?
其实用 ps 命令就可以做到,比如执行下面的指令:
注意,这些线程的名字外面都有中括号,这说明 ps 无法获取它们的命令行参数(cmline)。一般来说,ps 的输出中,名字括在中括号里的,一般都是内核线程。
Linux 中的中断处理程序分为上半部和下半部:
上半部对应硬件中断,用来快速处理中断。
下半部对应软中断,用来异步处理上半部未完成的工作。
Linux 中的软中断包括网络收发、定时、调度、RCU 锁等各种类型,可以通过查看 /proc/softirqs 来观察软中断的运行情况。
C. Linux硬件中断服务程序中为什么不能睡眠
以下是根据一些资料和个人理解总结的,如有错误希望指出。
首先需要明确的是,这里的中断指的是硬件中断。
从事实上说明 有下面这些理由。
硬件中断本身就是用来作为处理紧急事件的一种方法,所以硬件中断服务程序应该尽量的快。不应该睡眠
硬件中断服务程序会打断某个无辜的进程(甚至是另一个中断服务程序)。所以它应该尽量快(突然被打断运行已经够无辜了,总不能还让一直等待吧)
硬件中断是无法预测的,如果在中断服务程序中睡眠就会导致睡眠过程中该中断请求的丢失。(linux中一个中断处理程序在运行时,相应中断线会被屏蔽掉)
要理解为什么硬件中断处理程序中不能睡眠的内在机制。需要理解下面这些概念。
1 linux内核的工作模式 linux内核有两种工作模式,进程上下文和中断上下文。
1.1 进程上下文指内核代表进程执行
比如进程执行系统调用产生异常陷入内核后,内核就代表该进程执行操作。可以通过current宏关联到当前进程,
因为陷入内核时进程造成的或需求的,所以内核的执行与当前进程相关。所以说他代表该进程执行
1.2 执行一个硬件中断处理程序时就处于中断上下文
中断上下中和进程没什么关系(虽然此时current指向被中断的进程)。这也容易理解,因为硬件中断随时
都有可能发生。不像上面提到的像系统调用之类的异常是由于程序执行某些指令造成的,所以陷入
内核后,因为要坐的工作基本都是和当前这个进程相关的(因为是他执行一些指令导致产生的异常),
所以我们说内核代表进程执行。
但是硬件中断的产生完全无法预测,所以谁也不知道硬件中断将会打断哪个进程。所以硬件中断服务程序与进程无关
它处于中断上下文中
2 异常和硬件中断的区别
2.1 异常属于中断的一种,和硬件中断的区别在与它是"同步",是由于执行一些指令造成的。如除0
或者执行过程中产生缺页,以及软中断实现的系统调用。(这也是叫“同步中断”的原因,因为指令的执行是要时钟同步的)。
当执行的指令会陷入内核时,就会运行在进程上下文中。内核代表进程
2.2 硬件中断时一种 异步中断,他随时都可能发生,无法预测。中断执行时处于中断上下文中。
综上,linux中硬件中断服务程序不能睡眠的原因在与。执行硬件中断服务程序时,内核处于中断上下文
中,此时内核与进程无关。如果睡眠后就不能调度回来了。因为调度程序调度的是进程,而之前的硬件中断服务程序却是和进程无关的
D. linux驱动中断号不对
linux驱动中断号不对原因分析:
Linux的中断宏观分为两种:软中断差枣和硬中断。声明一下,这里的软和硬的意思是指和软件相关以及和硬件相关,虚滑拆而不是软件实现的让埋中断或硬件实现的中断。
E. 海康linux 断电后 服务中断了
服务中断有两方面(硬件、软件);软件,其他能显示,那说明这几个可能设置出问题(方法:检查设置);硬件方唤老租面,主要原因有线路中断、硬件老化等,需要设备实地检查。
致力于物联网产品研发制造以及整套解决方案的提供,产品广泛应用于智慧交通、智慧工地、物资管理、金融管理、图书档案、生产制造、仓储物流、防伪溯和兆源、跟踪定位等领域含做。
F. Linux下通过哪个命令怎么查看中断
与Linux设备驱动中中断处理相关的首先是申请与释放IRQ的API request_irq()和free_irq()。
C++是一种面向对象的计算机程序设计语言,由美国AT&T贝尔实验室的本贾尼·斯特劳斯特卢普博士在20世纪80年代初期发明并实现,最初它被称作“C with Classes”(包含类的C语言)。
它是一种静态数据类型检查的、支持多重编程范式的通用程序设计语言,支持过程化程序设计、数据抽象、面向对象程序设计、泛型程序设计等多种程序设计风格。
在C基础上,一九八三年又由贝尔实验室的Bjarne Strou-strup推出了C++,C++进一步扩充和完善了C语言,成为一种面向 对象的程序设计语言。
C++目前流行的编译器最新版本是Borland C++ 4.5,Symantec C++ 6.1,和Microsoft Visual C++ 2012。