❶ 单片机定时器 计数器的工作原理,及如何实现定时 计数功能
原理: 16位的定时器/计数器实质上就是一个加1计数器,其控制电路受软件控制、切换。 当定时器/计数器为定时工作方式时,计数器的加1信号由振荡器的12分频信号产生,即每过一个机器周期,计数器加1,直至计满溢出为止。
显然,定时器的定时时间与系统的振荡频率有关。因一个机器周期等于12个振荡周期,所以计数频率fcount=1/12osc。
两个字节最大数据为65536(十进制),或者0FFFFH(十六进制)
高字节为TH0=(65536-X)/256,就是除以256后的整数部分;
低字节为TL0=(65536-X)%256,减去高字节后余下的部分;
定时/计数器
定时/计数器T0和T1分别是由两个8位的专用寄存器组成,即定时/计数器T0由TH0和TL0组成,T1由TH1和TL1组成。此外,其内部还有2个8位的特殊功能寄存器TMOD和TCON,TMOD负责控制和确定T0和T1的功能和工作模式,TCON用来控制T0和T1启动或停止计数,同时包含定时/计数器的状态。
以上内容参考:网络-定时器中断
❷ 单片机秒表功能实现的原理
利用单 片机内定时器,一次定时50ms,定义4 个变量,分别是时、 分、秒和中断次数,每中断一次中断次数变量加1,累积20次,即是1S,然后秒加1,够60秒后秒清0,分加1,60 分后,分清0,时加1,24小时后 ,小时清0,这些都在中断程序中完成,主程序中不断地显示时间,这就是一个时钟。在此基础上,增加按键控制,可以调整时间,设定闹钟,使功能更加完善。
❸ 单片机定时和计数原理的循环
单片机的定时器是用内部时钟信号,计脉冲的个数,
计数器是计外面的脉冲个数,
定时器用的脉冲频率是晶振频率的1/12.当计数个数达到一定值后,产生溢出,产生一个中断信号.
而计数器用的脉冲外面的脉冲,从io输入,当计数个数达到一定值后,产生溢出,产生一个中断信号.
两者工作原理差不多.都是计数
,用的信号来源不同.
❹ 89c51单片机定时计数器的工作原理
单片机C51计数器要求:编写一个计数器程序,将T0作为计数器来使用,对外部信号计数,将所计数字显示在数码管上。 该部分的硬件电路如图所示,U1的P0口和P2口的部份引脚构成了6位LED数码管驱动电路,数码管采用共阳型,使用PNP型三极管作为片选端的驱动,所有三极管的发射极连在一起,接到正电源端,它们的基极则分别连到P2.0…P2.5,当P2.0…P2.5中某引脚输是低电平时,三极管导通,给相应的数码管供电,该位数码管点亮哪些笔段,则取决于笔段引脚是高或低电平。图中看出,所有6位数码管的笔段连在一起,通过限流电阻后接到P0口,因此,哪些笔段亮就取决于P0口的8根线的状态。 编写程序时,首先根据硬件连线写出LED数码管的字形码、位驱动码,然后编写程序如下: #include "reg51.h"#define uchar unsigned char#define uint unsigned int uchar code BitTab[]={0x7F,0xBF,0xDF,0xEF,0xF7,0xFB};//位驱动码uchar code DispTab[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E,0xFF};//字形码uchar DispBuf[6]; //显示缓冲区 void Timer1() interrupt 3{ uchar tmp;uchar Count; //计数器,显示程序通过它得知现正显示哪个数码管TH1=(65536-3000)/256;TL1=(65536-3000)%256; //重置初值tmp=BitTab[Count]; //取位值P2=P2|0xfc; //P2与11111100B相或P2=P2&tmp; //P2与取出的位值相与tmp=DispBuf[Count];//取出待显示的数 tmp=DispTab[tmp]; //取字形码P0=tmp;Count++;if(Count==6)Count=0; }void main(){ uint tmp;P1=0xff;P0=0xff;TMOD=0x15; //定时器0工作于计数方式1,定时器1工作于定时方式1TH1=(65536-3000)/256;TL1=(65536-3000)%256; //定时时间为3000个周期TR0=1; //计数器0开始运行TR1=1;EA=1;ET1=1;for(;;){ tmp=TL0|(TH0<<8);//取T0中的数值DispBuf[5]=tmp%10;tmp/=10;DispBuf[4]=tmp%10; tmp/=10;DispBuf[3]=tmp%10;tmp/=10;DispBuf[2]=tmp%10;DispBuf[1]=tmp/10;DispBuf[0]=0;}} 这个程序中用到了一个新的知识点,即数组,首先作一个介绍。 数组是C51的一种构造数据类型,数组必须由具有相同数据类型的元素构成,这些数据的类型就是数组的基本类型,如:数组中的所有元素都是整型,则该数组称为整型数组,如所有元素都是字符型,则该数组称为字符型数组。 数组必须要先定义,后使用,这里仅介绍一维数组的定义,其方式为: 类型说明符数组名[整型表达式] 定义好数组后,可以通过:数组名[整型表达式]来使用数组元素。 在定义数组时,可以对数组进行初始化,即给其赋予初值,这可用以下的一些方法实现: 1.在定义数组时对数组的全部元素赋予初值:例:int a[5]={1,2,3,4,5}; 2.只对数组的部分元素初始化;例:int a[5]={1,2}; 上面定义的a数组共有5个元素,但只对前两个赋初值,因此a[0]和a[1]的值是1、2,而后面3个元素的值全是0。 3.在定义数组时对数组元素的全部元素不赋初值,则数组元素值均被初始化为0 4.可以在定义时不指明数组元素的个数,而根据赋值部分由编译器自动确定例:uchar BitTab[]={0x7F,0xBF,0xDF,0xEF,0xF7,0xFB};则相当于定义了一个BitTab[6]这样一个数组。 5.可以为数组指定存储空间,这个例子中,未指定空间时,将数组定义在内部RAM中,可以用code关键字将数组元素定义在ROM空间中。uchar code BitTab[]={0x7F,0xBF,0xDF,0xEF,0xF7,0xFB}; 用这两种定义分别编译,可以看出使用了code关键字后系统占用的RAM数减少了,这种方式用于编程中不需要改变内容的场合,如显示数码管的字形码等是很合适的。 6.C语言并不对越界使用数组进行检测,例如上例中数组的长度是6,其元素应该是从BitTab[0]~BitTab[5],但是如果你在程序中写上BitTab[6],编译器并不会认为这有语法错误,也不会给出警告(其他语言如BASCI等则有严格的规定,这种情况将视为语法错误),因此,编程者必须自己小心确认这是否是你需要的结果。 程序分析:程序中将定时器T1用作数码管显示,通过interrupt 3关键字定义函数Timer1()为定时器1中断服务程序,在这个中断服务程序中,使用 TH1=(65536-3000)/256;TL1=(65536-3000)%256; 来重置定时器初值,这其中3000即为定时周期,这样的写法可以直观地看到定时周期数,是常用的一种写法。其余程序段分别完成取位码以选择数码管、从显示缓冲区获得待显示数值、根据该数值取段码以点亮相应笔段等任务。其中使用了一个计数器,该计数器的值从0~5对应第1到第6位的数码管。 主程序的第一部分是做一些初始化的操作,设置定时器工作模式、开启定时器T1、开启计数器T0、开启T1中断及总中断,随后进入主循环,主循环首先用unsigned int型变量tmp取出T0中的数值,这里使用了“tmp=TL0|(TH0<<8);”这样的形式,这相当于tmp=TH0*256+TL0,但比之于后一种形式,该方式可以得到更高的效,其后就是将tmp值不断地除10取整,这样将int型数据的各位分离并送入相应的显示缓冲区
❺ 单片机内部定时或计数器具备,定时和技术两种功能,工作原理是什么
其实,单片机内部定时器/计滑燃数器是一个计数器,只是两种叫法,对知信内部时钟脉冲计数,准确说是对机器周期计数,因机器周期很精确,计数的结果可以实现定时,才又叫定时器。如果是对外部事件脉冲信号计数,就叫计数器了,因为只能计数,不能用来定时信猛虚,每个脉冲都是无规律的,时间不准确,不可能计时啦。
❻ 单片机定时器原理及使用
这里通俗的说下C51单片机的定时器的工作原理,C51单片机的定时器是由计数器构成的,所计量的时间是通过计算固定周期的脉冲个数的累计获得的,通过设置定时器的工作模式,可以由16位(高、低两个8位)寄存器模式或其他位数的寄存器模式来计数,以16位计数模式来讨论,那就是无论那种工作模式只有当计数用的寄存器的各个位全部置1,也就是满值后下一个计数脉冲进入时使寄存器产生溢出,而这个溢出才会使计数产生中断从而完成一次定时控制,因此,如果我们想产生某个时长的定时,那么我需要将这个时长根据单片机运行的时钟频率、周期等等相关因素换算成需要计数的个数,进而在这个满值的16位寄存器中扣除需要计数的个数,启动运行后当计数值补充满了寄存器就完成了一次计时,而一个16位寄存器满值为2的16次方=65536,假如一个计数脉冲的周期为1us,那么满值后就会耗时65536us,假如我们需要计时36us,那么我们只需要为寄存器赋值65500就可以了,这里需要注意的是,因为C51单片机的寄存器是8位的,我们需要将这个65500拆分出高8位数据装入THx中计算方法为THx=65500/256,再计算出低8位数据装入TLx中,THx=65500%256。
❼ 51单片机定时计数器原理
其实就是计数器原理,所谓的定时器就是用计数器来实现的一个功能而已。
计数器的原理,很简单,就是给个方波信号,一个方波,就加1即可,最简单的都能用数字电子技术里的或门,与门,非门来实现的。专门做计数的芯片也是一大堆,这里我们就不讨论怎么用或门,非门,与门,做出一个计数器了吧。
那么怎么用计数器实现定时器的功能呢?其实很简单,只要你给计数器的方波是规律的就可以了啊,比如做一个一秒钟输出一个方波的电路,然后把这个方波给计数器,即可,那么这个计数器就是一个定时器了,假设计数器一开始是0,一个方波以后,计数器就变成了1,对吧,但是计数器的方波来源是稳定的,一秒钟就给一个方波,那么这个就是个1s的定时器了吧,我们可以通过计数器的数值,来确定时间了吧,这样就可以完成定时的功能了吧。
单片机也是通过这种手段来形成的,你可能就要问了,那我单片机不是没有方波发射的装置吗?对不起,单片机芯片内部自己内置了,所以你不需要自己做这个方波发生装置,那么单片机是用什么来形成方波的呢?答案是你外置的晶振,单片机是通过你外部的那个晶振来实现的,而且晶振也是你单片机能跑起来的关键,他是单片机的CPU等内部部件工作的时间标准,比如晶振12MHZ,就是这个晶振1秒钟,能有12M个方波形成懂吧,所以这个频率是很高的了,但是单片机一般不在这么高的频率上工作,所以CPU的时间单位,不是晶振的频率,一般是要进行降频处理的,也叫分频,像51单片机,很多都是12分频的,即外部晶振是12MHZ,内部CPU工作的频率只有1MHZ,内部的计数器一般也不能在那么高的频率下工作,所以也是分频的,你最需要了解的是计数器或定时器里的数值加1,对应的时间是多少,一般都是1ms这样的整数倍。
然后计数器呢?计数器就是用晶振分频后的方波来工作的,晶振工作稳定,频率稳定,那么定时器就稳定,而如果你不用定时器的时候呢?那么计数器的计数端,就和来自晶振的方波,切断,切换成对应的IO端口的线路即可,而外部的端口,他们的波形和频率都不确定,所以就不是定时器了,如果你在外部,加个稳定的方波装置,计数器也就是定时器了,只不过这个需要自己去实现,岂不是麻烦?所以一般都用单片机内部自带的,方便而已。
❽ 如何用单片机定时
朋友,我觉得你还是要懂得定时的原理。c52内部有两个定时器,t0和t1,。他们分别有4中工作模式。就拿t0来说。模式0:是一个13位计数器。模式1:是一个16位计数器。模式2:是一个自带重装的8为计数器。模式3:t0被拆为两个独立的计数器。
定时计数器,是定时还是计数要看自己对相关寄存器的设置,但是总的来说都是对t0计数器进行计数,只是定时器,的计数时钟源是晶振经过12分频提供的,计数是由外部输入的信号提供。
真对你问题对定时器进行设置如下:
EA=1;//总中断使能
ET0=1;//T0中断使能
TR0=1;//T0定时器启动使能
TMOD=0X01;//将t0设置为模式1,定时器。
TL0=(65536-8*1000000/12*TIME)%256;//地位赋初值
TH0=(65536-8*1000000/12*TIME)/256;//高位赋初值
//TIME为你要定时的时间,当然,此值不能大于定时器最大定时时间。8m晶振模式1:最大时间:大约为98毫秒
。所可以去time为50毫秒,然后在中断里面设个静态变量,或者用个全局变量计数,记满200次刚好10s,此时改变相应二极管的电平就可以了。