Ⅰ linux 查看当前的网络配置
linux 查看当前的网络配置
1、执行 ifconfig命令,结果如下可以查看到ip、mac地址等相关网络配置
配置说明
DEVICE=eth0网卡设备名,eth0表示第一张网卡
BOOTPROTO=none是否自动获取IP(none、static、dhcp),当值为dhcp时,只需配置上述例子中的那几项就可以联网
HWADDR=00:0C:29:11:30:39MAC地址
NM_CONTROLLED=yes是否可以由Network Manager图形管理工具托管
ONBOOT=yes是否随网络服务启动当前网卡生效(在CentOS 6 以上的版本中ONBOOT是默认关闭的。)
TYPE=Ethernet网络类型,这里为以太网
UUID=5ab36190-a5df-4bf1-94d8-6c126afd05f1唯一识别码
IPADDR=192.168.0.200IP地址
NETMASK=255.255.255.0子网掩码
GATEWAY=192.168.0.1网关
DNS1=202.106.0.20DNS
IPV6INIT=noIPv6是否启用,这里设置为不启用
USERCTL=no是否允许非root用户控制此网卡,这里为不允许
Ⅱ linux下怎么检测网线连接状态
首先让我们通过xshell登录一台linux服务器,查看一下当前这台机器有几块网卡:ifconfig -a;我们这台机器有两块网卡分别是eth0和eth1
然后让我们模拟一下环境:拔掉eth1的网线,再次执行:ifconfig -a这条命令,对比一下eth0和eth1的区别,发现eht1不再running。没错这个字段就是看网卡是否有连线的,或者网线是否有问题的。
3
接着让我们把eth1的网线插上,再执行一遍:ifconfig -a;对比一下eth0和eth1,发现此时eth1已经running了。
4
简单吧!不知道小编这篇文章对您是否有所帮助呢?
Ⅲ “Linux”中如何判断哪个网卡连接网线
【解决方法】
1、ifconfig查看现在使用的网卡。
2、ethtool命令查看网卡的具体信息,如eth0是连接状态,则正常使用。
Ⅳ linux 网卡状态命令mii-tool 和 ethtool
linux下用mii-tool和ethtool 查看网线是否正确连接到网卡
输入mii-tool可以查看网线是否连接到网卡
有时驱动可能不支持会出错下列错误
可以使用ethtool查看
Link detected: yes为正常no为失败
mii-tool 的用法:
mii-tool 在更改网络设备通信协商方式的方法比较简单,用 -v 参数来查看网络接口的状态;看下面的例子;
mii-tool 更改网络接口协商的方法;
[root@localhost ~]# mii-tool --help
usage: mii-tool [-VvRrwl] [-A media,... | -F media] [interface ...]
-V, --version display version information
-v, --verbose more verbose output 注:显示网络接口的信息;
-R, --reset reset MII to poweron state 注:重设MII到开启状态;
-r, --restart restart autonegotiation 注:重启自动协商模式;
-w, --watch monitor for link status changes 注:查看网络接口连接的状态变化;
-l, --log with -w, write events to syslog 注:写入事件到系统日志;
-A, --advertise=media,... advertise only specified media 注:指令特定的网络接口;
-F, --force=media force specified media technology 注:更改网络接口协商方式;
media: 100baseT4, 100baseTx-FD, 100baseTx-HD, 10baseT-FD, 10baseT-HD,
(to advertise both HD and FD) 100baseTx, 10baseT
example:
[at_Neal:root:~:]# mii-tool
eth0: negotiated 100baseTx-FD flow-control, link ok
eth1: no link
eth2: negotiated 100baseTx-FD flow-control, link ok
Ⅳ 关于 Linux 网络,你必须知道这些
我们一起学习了文件系统和磁盘 I/O 的工作原理,以及相应的性能分析和优化方法。接下来,我们将进入下一个重要模块—— Linux 的网络子系统。
由于网络处理的流程最复杂,跟我们前面讲到的进程调度、中断处理、内存管理以及 I/O 等都密不可分,所以,我把网络模块作为最后一个资源模块来讲解。
同 CPU、内存以及 I/O 一样,网络也是 Linux 系统最核心的功能。网络是一种把不同计算机或网络设备连接到一起的技术,它本质上是一种进程间通信方式,特别是跨系统的进程间通信,必须要通过网络才能进行。随着高并发、分布式、云计算、微服务等技术的普及,网络的性能也变得越来越重要。
说到网络,我想你肯定经常提起七层负载均衡、四层负载均衡,或者三层设备、二层设备等等。那么,这里说的二层、三层、四层、七层又都是什么意思呢?
实际上,这些层都来自国际标准化组织制定的开放式系统互联通信参考模型(Open System Interconnection Reference Model),简称为 OSI 网络模型。
但是 OSI 模型还是太复杂了,也没能提供一个可实现的方法。所以,在 Linux 中,我们实际上使用的是另一个更实用的四层模型,即 TCP/IP 网络模型。
TCP/IP 模型,把网络互联的框架分为应用层、传输层、网络层、网络接口层等四层,其中,
为了帮你更形象理解 TCP/IP 与 OSI 模型的关系,我画了一张图,如下所示:
当然了,虽说 Linux 实际按照 TCP/IP 模型,实现了网络协议栈,但在平时的学习交流中,我们习惯上还是用 OSI 七层模型来描述。比如,说到七层和四层负载均衡,对应的分别是 OSI 模型中的应用层和传输层(而它们对应到 TCP/IP 模型中,实际上是四层和三层)。
OSI引入了服务、接口、协议、分层的概念,TCP/IP借鉴了OSI的这些概念建立TCP/IP模型。
OSI先有模型,后有协议,先有标准,后进行实践;而TCP/IP则相反,先有协议和应用再提出了模型,且是参照的OSI模型。
OSI是一种理论下的模型,而TCP/IP已被广泛使用,成为网络互联事实上的标准。
有了 TCP/IP 模型后,在进行网络传输时,数据包就会按照协议栈,对上一层发来的数据进行逐层处理;然后封装上该层的协议头,再发送给下一层。
当然,网络包在每一层的处理逻辑,都取决于各层采用的网络协议。比如在应用层,一个提供 REST API 的应用,可以使用 HTTP 协议,把它需要传输的 JSON 数据封装到 HTTP 协议中,然后向下传递给 TCP 层。
而封装做的事情就很简单了,只是在原来的负载前后,增加固定格式的元数据,原始的负载数据并不会被修改。
比如,以通过 TCP 协议通信的网络包为例,通过下面这张图,我们可以看到,应用程序数据在每个层的封装格式。
这些新增的头部和尾部,增加了网络包的大小,但我们都知道,物理链路中并不能传输任意大小的数据包。网络接口配置的最大传输单元(MTU),就规定了最大的 IP 包大小。在我们最常用的以太网中,MTU 默认值是 1500(这也是 Linux 的默认值)。
一旦网络包超过 MTU 的大小,就会在网络层分片,以保证分片后的 IP 包不大于 MTU 值。显然,MTU 越大,需要的分包也就越少,自然,网络吞吐能力就越好。
理解了 TCP/IP 网络模型和网络包的封装原理后,你很容易能想到,Linux 内核中的网络栈,其实也类似于 TCP/IP 的四层结构。如下图所示,就是 Linux 通用 IP 网络栈的示意图:
我们从上到下来看这个网络栈,你可以发现,
这里我简单说一下网卡。网卡是发送和接收网络包的基本设备。在系统启动过程中,网卡通过内核中的网卡驱动程序注册到系统中。而在网络收发过程中,内核通过中断跟网卡进行交互。
再结合前面提到的 Linux 网络栈,可以看出,网络包的处理非常复杂。所以,网卡硬中断只处理最核心的网卡数据读取或发送,而协议栈中的大部分逻辑,都会放到软中断中处理。
我们先来看网络包的接收流程。
当一个网络帧到达网卡后,网卡会通过 DMA 方式,把这个网络包放到收包队列中;然后通过硬中断,告诉中断处理程序已经收到了网络包。
接着,网卡中断处理程序会为网络帧分配内核数据结构(sk_buff),并将其拷贝到 sk_buff 缓冲区中;然后再通过软中断,通知内核收到了新的网络帧。
接下来,内核协议栈从缓冲区中取出网络帧,并通过网络协议栈,从下到上逐层处理这个网络帧。比如,
最后,应用程序就可以使用 Socket 接口,读取到新接收到的数据了。
为了更清晰表示这个流程,我画了一张图,这张图的左半部分表示接收流程,而图中的粉色箭头则表示网络包的处理路径。
了解网络包的接收流程后,就很容易理解网络包的发送流程。网络包的发送流程就是上图的右半部分,很容易发现,网络包的发送方向,正好跟接收方向相反。
首先,应用程序调用 Socket API(比如 sendmsg)发送网络包。
由于这是一个系统调用,所以会陷入到内核态的套接字层中。套接字层会把数据包放到 Socket 发送缓冲区中。
接下来,网络协议栈从 Socket 发送缓冲区中,取出数据包;再按照 TCP/IP 栈,从上到下逐层处理。比如,传输层和网络层,分别为其增加 TCP 头和 IP 头,执行路由查找确认下一跳的 IP,并按照 MTU 大小进行分片。
分片后的网络包,再送到网络接口层,进行物理地址寻址,以找到下一跳的 MAC 地址。然后添加帧头和帧尾,放到发包队列中。这一切完成后,会有软中断通知驱动程序:发包队列中有新的网络帧需要发送。
最后,驱动程序通过 DMA ,从发包队列中读出网络帧,并通过物理网卡把它发送出去。
多台服务器通过网卡、交换机、路由器等网络设备连接到一起,构成了相互连接的网络。由于网络设备的异构性和网络协议的复杂性,国际标准化组织定义了一个七层的 OSI 网络模型,但是这个模型过于复杂,实际工作中的事实标准,是更为实用的 TCP/IP 模型。
TCP/IP 模型,把网络互联的框架,分为应用层、传输层、网络层、网络接口层等四层,这也是 Linux 网络栈最核心的构成部分。
我结合网络上查阅的资料和文章中的内容,总结了下网卡收发报文的过程,不知道是否正确:
当发送数据包时,与上述相反。链路层将数据包封装完毕后,放入网卡的DMA缓冲区,并调用系统硬中断,通知网卡从缓冲区读取并发送数据。
了解 Linux 网络的基本原理和收发流程后,你肯定迫不及待想知道,如何去观察网络的性能情况。具体而言,哪些指标可以用来衡量 Linux 的网络性能呢?
实际上,我们通常用带宽、吞吐量、延时、PPS(Packet Per Second)等指标衡量网络的性能。
除了这些指标,网络的可用性(网络能否正常通信)、并发连接数(TCP 连接数量)、丢包率(丢包百分比)、重传率(重新传输的网络包比例)等也是常用的性能指标。
分析网络问题的第一步,通常是查看网络接口的配置和状态。你可以使用 ifconfig 或者 ip 命令,来查看网络的配置。我个人更推荐使用 ip 工具,因为它提供了更丰富的功能和更易用的接口。
以网络接口 eth0 为例,你可以运行下面的两个命令,查看它的配置和状态:
你可以看到,ifconfig 和 ip 命令输出的指标基本相同,只是显示格式略微不同。比如,它们都包括了网络接口的状态标志、MTU 大小、IP、子网、MAC 地址以及网络包收发的统计信息。
第一,网络接口的状态标志。ifconfig 输出中的 RUNNING ,或 ip 输出中的 LOWER_UP ,都表示物理网络是连通的,即网卡已经连接到了交换机或者路由器中。如果你看不到它们,通常表示网线被拔掉了。
第二,MTU 的大小。MTU 默认大小是 1500,根据网络架构的不同(比如是否使用了 VXLAN 等叠加网络),你可能需要调大或者调小 MTU 的数值。
第三,网络接口的 IP 地址、子网以及 MAC 地址。这些都是保障网络功能正常工作所必需的,你需要确保配置正确。
第四,网络收发的字节数、包数、错误数以及丢包情况,特别是 TX 和 RX 部分的 errors、dropped、overruns、carrier 以及 collisions 等指标不为 0 时,通常表示出现了网络 I/O 问题。其中:
ifconfig 和 ip 只显示了网络接口收发数据包的统计信息,但在实际的性能问题中,网络协议栈中的统计信息,我们也必须关注。你可以用 netstat 或者 ss ,来查看套接字、网络栈、网络接口以及路由表的信息。
我个人更推荐,使用 ss 来查询网络的连接信息,因为它比 netstat 提供了更好的性能(速度更快)。
比如,你可以执行下面的命令,查询套接字信息:
netstat 和 ss 的输出也是类似的,都展示了套接字的状态、接收队列、发送队列、本地地址、远端地址、进程 PID 和进程名称等。
其中,接收队列(Recv-Q)和发送队列(Send-Q)需要你特别关注,它们通常应该是 0。当你发现它们不是 0 时,说明有网络包的堆积发生。当然还要注意,在不同套接字状态下,它们的含义不同。
当套接字处于连接状态(Established)时,
当套接字处于监听状态(Listening)时,
所谓全连接,是指服务器收到了客户端的 ACK,完成了 TCP 三次握手,然后就会把这个连接挪到全连接队列中。这些全连接中的套接字,还需要被 accept() 系统调用取走,服务器才可以开始真正处理客户端的请求。
与全连接队列相对应的,还有一个半连接队列。所谓半连接是指还没有完成 TCP 三次握手的连接,连接只进行了一半。服务器收到了客户端的 SYN 包后,就会把这个连接放到半连接队列中,然后再向客户端发送 SYN+ACK 包。
类似的,使用 netstat 或 ss ,也可以查看协议栈的信息:
这些协议栈的统计信息都很直观。ss 只显示已经连接、关闭、孤儿套接字等简要统计,而 netstat 则提供的是更详细的网络协议栈信息。
比如,上面 netstat 的输出示例,就展示了 TCP 协议的主动连接、被动连接、失败重试、发送和接收的分段数量等各种信息。
接下来,我们再来看看,如何查看系统当前的网络吞吐量和 PPS。在这里,我推荐使用我们的老朋友 sar,在前面的 CPU、内存和 I/O 模块中,我们已经多次用到它。
给 sar 增加 -n 参数就可以查看网络的统计信息,比如网络接口(DEV)、网络接口错误(EDEV)、TCP、UDP、ICMP 等等。执行下面的命令,你就可以得到网络接口统计信息:
这儿输出的指标比较多,我来简单解释下它们的含义。
其中,Bandwidth 可以用 ethtool 来查询,它的单位通常是 Gb/s 或者 Mb/s,不过注意这里小写字母 b ,表示比特而不是字节。我们通常提到的千兆网卡、万兆网卡等,单位也都是比特。如下你可以看到,我的 eth0 网卡就是一个千兆网卡:
其中,Bandwidth 可以用 ethtool 来查询,它的单位通常是 Gb/s 或者 Mb/s,不过注意这里小写字母 b ,表示比特而不是字节。我们通常提到的千兆网卡、万兆网卡等,单位也都是比特。如下你可以看到,我的 eth0 网卡就是一个千兆网卡:
我们通常使用带宽、吞吐量、延时等指标,来衡量网络的性能;相应的,你可以用 ifconfig、netstat、ss、sar、ping 等工具,来查看这些网络的性能指标。
小狗同学问到: 老师,您好 ss —lntp 这个 当session处于listening中 rec-q 确定是 syn的backlog吗?
A: Recv-Q为全连接队列当前使用了多少。 中文资料里这个问题讲得最明白的文章: https://mp.weixin.qq.com/s/yH3PzGEFopbpA-jw4MythQ
看了源码发现,这个地方讲的有问题.关于ss输出中listen状态套接字的Recv-Q表示全连接队列当前使用了多少,也就是全连接队列的当前长度,而Send-Q表示全连接队列的最大长度