⑴ linux的C语言开线程后如何归还使用的内存
线程自身用的内存,是在栈上系统自动分配,或自己配置(操作系统提供了可编程配置参数,但也是操作系统在管理)。线程运行完成后返回栈内存操作系统会自动回收。需要注意的是,如果是在线程运行中中,使用malloc或操作系统的内存分配函数分配的内存,需要在线程返回前或返回后显示释放。自己编写代码,显示调用free或操作系统提供的内存释放函数。
⑵ c/c++ linux c 多线程 pthread_detach(id); phthread_join(id,0);
有区别。
只用1可以。同时使用1,2是不可以的。
一般情况下,线程终止后,其终止状态一直会保留到其他线程调用pthread_join获取它的状态为止。但是线程也可以设置为detach状态,这样的线程一旦终止就立即回收它占用的所有资源,而不保留终止状态。
注意:
不能对已经detach状态的线程调用pthread_join。
对一个尚未detach的线程调用phread_join或phread_detach都可以把该线程设置为datach,也就是说,不能对同一线程调用两次pthread_join,或者如果已经对一个线程调用了pthread_detach就不能再调用pthread_join了。
phtread_join是阻塞式的,需要等待这个线程终止,而phread_datach是不阻塞的,所以可以用phread_datach来销毁终止线程
⑶ linux rcu锁问题怎么查
众所周知,为了保护共享数据,需要一些同步机制,如自旋锁(spinlock),读写锁(rwlock),它们使用起来非常简单,而且是一种很有效的同步机制,在UNIX系统和Linux系统中得到了广泛的使用。但是随着计算机硬件的快速发展,获得这种锁的开销相对于CPU的速度在成倍地增加,原因很简单,CPU的速度与访问内存的速度差距越来越大,而这种锁使用了原子操作指令,它需要原子地访问内存,也就说获得锁的开销与访存速度相关,另外在大部分非x86架构上获取锁使用了内存栅(Memory Barrier),这会导致处理器流水线停滞或刷新,因此它的开销相对于CPU速度而言就越来越大。
在操作系统中,数据一致性访问是一个非常重要的部分,通常我们可以采用锁机制实现数据的一致性访问。例如,semaphore、spinlock机制,在访问共享数据时,首先访问锁资源,在获取锁资源的前提下才能实现数据的访问。这种原理很简单,根本的思想就是在访问临界资源时,首先访问一个全局的变量(锁),通过全局变量的状态来控制线程对临界资源的访问。但是,这种思想是需要硬件支持的,硬件需要配合实现全局变量(锁)的读-修改-写,现代CPU都会提供这样的原子化指令。采用锁机制实现数据访问的一致性存在如下两个问题:
1、 效率问题。锁机制的实现需要对内存的原子化访问,这种访问操作会破坏流水线操作,降低了流水线效率。这是影响性能的一个因素。另外,在采用读写锁机制的情况下,写锁是排他锁,无法实现写锁与读锁的并发操作,在某些应用下回降低性能。
2、 扩展性问题。当系统中CPU数量增多的时候,采用锁机制实现数据的同步访问效率偏低。并且随着CPU数量的增多,效率降低,由此可见锁机制实现的数据一致性访问扩展性差。
为了解决上述问题,Linux中引进了RCU机制。该机制在多CPU的平台上比较适用,对于读多写少的应用尤其适用。RCU的思路实际上很简单,下面对其进行描述:
1、 对于读操作,可以直接对共享资源进行访问,但是前提是需要CPU支持访存操作的原子化,现代CPU对这一点都做了保证。但是RCU的读操作上下文是不可抢占的(这一点在下面解释),所以读访问共享资源时可以采用read_rcu_lock(),该函数的工作是停止抢占。
2、 对于写操作,其需要将原来的老数据作一次备份(),然后对备份数据进行修改,修改完毕之后再用新数据更新老数据,更新老数据时采用了rcu_assign_pointer()宏,在该函数中首先屏障一下memory,然后修改老数据。这个操作完成之后,需要进行老数据资源的回收。操作线程向系统注册回收方法,等待回收。采用数据备份的方法可以实现读者与写者之间的并发操作,但是不能解决多个写着之间的同步,所以当存在多个写者时,需要通过锁机制对其进行互斥,也就是在同一时刻只能存在一个写者。
3、 在RCU机制中存在一个垃圾回收的daemon,当共享资源被update之后,可以采用该daemon实现老数据资源的回收。回收时间点就是在update之前的所有的读者全部退出。由此可见写者在update之后是需要睡眠等待的,需要等待读者完成操作,如果在这个时刻读者被抢占或者睡眠,那么很可能会导致系统死锁。因为此时写者在等待读者,读者被抢占或者睡眠,如果正在运行的线程需要访问读者和写者已经占用的资源,那么死锁的条件就很有可能形成了。
⑷ linux回收站在哪里
在linux中没有统一的回收站,回收站都是桌面环境自动添加的。在使用rm命令删除文件时,应该在确认要删除的情况下删除,不然文件删错后就无法找回了。
探究的一般过程是从发现问题、提出问题开始的,发现问题后,根据自己已有的知识和生活经验对问题的答案作出假设.设计探究的方案,包括选择材料、设计方法步骤等.按照探究方案进行探究,得到结果,再分析所得的结果与假设是否相符,从而得出结论.并不是所有的问题都一次探究得到正确的结论.有时,由于探究的方法不够完善,也可能得出错误的结论.因此,在得出结论后,还需要对整个探究过程进行反思.探究实验的一般方法步骤:提出问题、做出假设、制定计划、实施计划、得出结论、表达和交流.
科学探究常用的方法有观察法、实验法、调查法和资料分析法等.
观察是科学探究的一种基本方法.科学观察可以直接用肉眼,也可以借助放大镜、显微镜等仪器,或利用照相机、录像机、摄像机等工具,有时还需要测量.科学的观察要有明确的目的;观察时要全面、细致、实事求是,并及时记录下来;要有计划、要耐心;要积极思考,及时记录;要交流看法、进行讨论.实验方案的设计要紧紧围绕提出的问题和假设来进行.在研究一种条件对研究对象的影响时,所进行的除了这种条件不同外,其它条件都相同的实验,叫做对照实验.一般步骤:发现并提出问题;收集与问题相关的信息;作出假设;设计实验方案;实施实验并记录;分析实验现象;得出结论.调查是科学探究的常用方法之一.调查时首先要明确调查目的和调查对象,制订合理的调查方案.调查过程中有时因为调查的范围很大,就要选取一部分调查对象作为样本.调查过程中要如实记录.对调查的结果要进行整理和分析,有时要用数学方法进行统计.收集和分析资料也是科学探究的常用方法之一.收集资料的途径有多种.去图书管查阅书刊报纸,拜访有关人士,上网收索.其中资料的形式包括文字、图片、数据以及音像资料等.对获得的资料要进行整理和分析,从中寻找答案。
⑸ linux线程分离是什么意思
线程分离
在任意一个时间点上,线程是可结合(joinable)或者是可分离的(detached)。一个可结合线程是可以被其他线程收回资源和杀关闭。在被回收之前,他的存储器资源(栈等)是不释放的。而对于detached状态的线程,其资源不能被别的线程收回和关闭,只有等到线程结束才能由系统自动释放
默认情况,线程状态被设置为结合的。所以为了避免资源泄漏等问题,一个线程应当是被显示的join或者detach的,否则线程的状态类似于进程中的Zombie Process。会有部分资源没有被回收的。
⑹ linux内存回收的三种方式
1. 快速内存回收:处于get_page_from_freelist()函数中,在遍历zonelist过程中,对每个zone都在分配前进行判断,如果分配后zone的空闲内存数量 < 阀值 + 保留页框数量,那么此zone就会进行快速内存回收。其中阀值可能是min/low/high的任何一种,因为在快速内存分配,慢速内存分配和oom分配过程中如果回收的页框足够,都会调用到get_page_from_freelist()函数,所以快速内存回收不仅仅发生在快速内存分配中,在慢速内存分配过程中也会发生。
2. 直接内存回收:处于慢速分配过程中,直接内存回收只有一种情况下会使用,在慢速分配中无法从zonelist的所有zone中以min阀值分配页框,并且进行异步内存压缩后,还是无法分配到页框的时候,就对zonelist中的所有zone进行一次直接内存回收。注意,直接内存回收是针对zonelist中的所有zone的,它并不像快速内存回收和kswapd内存回收,只会对zonelist中空闲页框不达标的zone进行内存回收。在直接内存回收中,有可能唤醒flush内核线程。
3. kswapd内存回收:发生在kswapd内核线程中,每个node有一个swapd内核线程,也就是kswapd内核线程中的内存回收,是只针对所在node的,并且只会对分配了order页框数量后空闲页框数量 < 此zone的high阀值 + 保留页框数量的zone进行内存回收,并不会对此node的所有zone进行内存回收。
⑺ linux 常见命令 lsof,ps,ln...
[TOC]
可以列出被进程所打开的文件的信息。被打开的文件可以是
1.普通的文件
2.目录抽象为特殊文件
3.网络文件系统的文件,抽象为文件
4.字符设备文件在linux抽象为文件
5.(函数)共享库
6.管道,命名管道
7.符号链接
8.底层的socket字流,网络socket,unix域名socket
9.在linux里面,很多东西都抽象为文件,提供了统一的访问接口
属性第一个字符:
rwx=0x111,二进制表示
列出所有进程
-ef f:father
ps –el ,
e:every :显示所有进程信息,等价于A
a:all :显示除了当前终端进程外的其他进程
l: long 长格式显示进程信息。
linux 线程状态:
ps工具标识进程的5种状态码:
chmod 对象 +/- 模式
对象:u(user),g(group),o(other),a(all)
模式:r,w,x
由于inode号码与文件名分离,这种机制导致了一些Unix/Linux系统特有的现象。
软件不关闭情况下更新:写入同名不同inode的文件,下次启动由于老的inode已经丢失,操作系统回收原来的Block。
综上,总结一下软链接和硬链接的区别:
参考: 阮一峰的网络日志:理解inode
Ctrl+z 暂停进程执行
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
jobs: 查看后台任务
fg +jobNum: 将后台任务调到前台
未完,不定期更新中...
⑻ linux 创建了一个线程,如果没有停止线程。这个线程为循环跑还是截止
除非你的线程答埋函数内部有循环,否则哪来的什么循环跑,
你的线程函数返回了,线程就结束了
——当然,你需要回收线程资源。
void *ThreadFunc(void *)
{
printf("Hello world\n");
return NULL;
}
例如这样的线程郑举碰函数喊谈,它输出Hello world后,返回了,线程就结束了。
⑼ linux线程的创建、退出、等待、取消、分离
返回值:成功:0,错误:出错编号。
pthread不是Linux系统默认的库而是POSIX线程库。在Linux中将其作为一个库来使用,因此编译时需要加上-pthread以显式链接该库
返回线程ID
线程标识符在进程中是唯一的,即分别属于两不同进程的两个线程可能有相同的线程标识符
retval:返回信息
参数表:
thread: 要等待的线程的pid
retval:用来存储被等待线程的返回值
返回0:成功;返回错误号:失败
主线程阻塞自己,等待子线程结束,然后回收子线程资源
可以设置线程能否被取消和取消后是否立即执行
参数表
state:PTHREAD_CANCEL_DISABLE或者PTHREAD_CANCEL_ENABLE
oldstate:指针类型,上一次取消状态的指针,可设NULL
type:PTHREAD_CANCEL_ASYNCHRONOUS立即取消
PTHREAD_CANCEL_DEFERRED等待事件(如pthread_join时)才取消
在任何一个时间点上,线程是可结合的(joinable),或者是分离的(detached)。一个可结合的线程能够被其他线程收回其资源和杀死,只有当pthread_join()函数返回时,创建的线程才算终止,才能释放自己占用的系统资源;在被其他线程回收之前,它的存储器资源(如栈)是不释放的。相反,一个分离的线程是不能被其他线程回收或杀死的,它的存储器资源在它终止时由系统自动释放。 因此为了避免内存泄漏,所有线程的终止,要么已设为DETACHED,要么就需要使用pthread_join()来回收
返回0成功,错误号失败
分离后不可以再合并。该操作不可逆
综合以上要想让子线程总能完整执行(不会中途退出),
注:很多地方参照了黄茹老师主编的《Linux环境高级程序设计》