导航:首页 > 操作系统 > pthreadlinux多线程

pthreadlinux多线程

发布时间:2023-04-19 12:20:51

㈠ 关于linux下的多线程使用sem信号量的运行问题

不是信号量的问题
printf函数,是先写到输出缓冲,遇到\n时,或者缓冲区满时,或者有强制输出(fflush)时,才会将缓冲区里的内容输出到屏幕上(标准输出设备:stdout)。你的代码里面并没有以上3个触发条件的任意一种,所以printf的内存没有实际输出到屏幕上。
你只要在每个printf函数后面加上fflush(stdout);就可以了。

㈡ c/c++ linux c 多线程 pthread_detach(id); phthread_join(id,0);

有区别。


只用1可以。同时使用1,2是不可以的。


一般情况下,线程终止后,其终止状态一直会保留到其他线程调用pthread_join获取它的状态为止。但是线程也可以设置为detach状态,这样的线程一旦终止就立即回收它占用的所有资源,而不保留终止状态。

注意:

  1. 不能对已经detach状态的线程调用pthread_join。

  2. 对一个尚未detach的线程调用phread_join或phread_detach都可以把该线程设置为datach,也就是说,不能对同一线程调用两次pthread_join,或者如果已经对一个线程调用了pthread_detach就不能再调用pthread_join了。

  3. phtread_join是阻塞式的,需要等待这个线程终止,而phread_datach是不阻塞的,所以可以用phread_datach来销毁终止线程

㈢ Linux C++多线程同步的四种方式

From : https://blog.csdn.net/qq_39382769/article/details/96075346

1.同一个线程内部,指令按照先后顺序执行;但不同线程之间的指令很难说清楚是哪一个先执行,在并发情况下,指令执行的先后顺序由内核决定。

如果运行的结果依赖于不同线程执行的先后的话,那么就会形成竞争条件,在这样的情况下,计算的结果很难预知,所以应该尽量避免竞争条件的形成。

2.最常见的解决竞争条件的方法是:将原先分离的两个指令构成一个不可分割的原子操作,而其他任务不能插入到原子操作中!

3.对多线程来说,同步指的是在一定时间内只允许某一个线程访问某个资源,而在此时间内,不允许其他线程访问该资源!

互斥锁
条件变量
读写锁
信号量

一种特殊的全局变量,拥有lock和unlock两种状态。
unlock的互斥锁可以由某个线程获得,一旦获得,这个互斥锁会锁上变成lock状态,此后只有该线程由权力打开该锁,其他线程想要获得互斥锁,必须得到互斥锁再次被打开之后。

1.互斥锁的初始化, 分为静态初始化和动态初始化.

2.互斥锁的相关属性及分类

(1) attr表示互斥锁的属性;

(2) pshared表示互斥锁的共享属性,由两种取值:

1)PTHREAD_PROCESS_PRIVATE:锁只能用于一个进程内部的两个线程进行互斥(默认情况)

2)PTHREAD_PROCESS_SHARED:锁可用于两个不同进程中的线程进行互斥,使用时还需要在进程共享内存中分配互斥锁,然后为该互斥锁指定属性就可以了。

互斥锁存在缺点:
(1)某个线程正在等待共享数据内某个条件出现。

(2)重复对数据对象加锁和解锁(轮询),但是这样轮询非常耗费时间和资源,而且效率非常低,所以互斥锁不太适合这种情况。

当线程在等待满足某些条件时,使线程进入睡眠状态;一旦条件满足,就换线因等待满足特定条件而睡眠的线程。
程序的效率无疑会大大提高。

1)创建

静态方式:pthread_cond_t cond PTHREAD_COND_INITIALIZER

动态方式:int pthread_cond_init(&cond,NULL)

Linux thread 实现的条件变量不支持属性,所以NULL(cond_attr参数)

2)注销

int pthread_cond_destory(&cond)

只有没有线程在该条件变量上,该条件变量才能注销,否则返回EBUSY

因为Linux实现的条件变量没有分配什么资源,所以注销动作只包括检查是否有等待线程!(请参考条件变量的底层实现)

3)等待

条件等待:int pthread_cond_wait(&cond,&mutex)

计时等待:int pthread_cond_timewait(&cond,&mutex,time)

1.其中计时等待如果在给定时刻前条件没有被满足,则返回ETIMEOUT,结束等待

2.无论那种等待方式,都必须有一个互斥锁配合,以防止多个线程同时请求pthread_cond_wait形成竞争条件!

3.在调用pthread_cond_wait前必须由本线程加锁

4)激发

激发一个等待线程:pthread_cond_signal(&cond)

激发所有等待线程:pthread_cond_broadcast(&cond)

重要的是,pthread_cond_signal不会存在惊群效应,也就是是它最多给一个等待线程发信号,不会给所有线程发信号唤醒,然后要求他们自己去争抢资源!

pthread_cond_broadcast() 唤醒所有正在pthread_cond_wait()的同一个条件变量的线程。注意:如果等待的多个现场不使用同一个锁,被唤醒的多个线程执行是并发的。

pthread_cond_broadcast & pthread_cond_signal

1.读写锁比互斥锁更加具有适用性和并行性

2.读写锁最适用于对数据结构的读操作读操作次数多余写操作次数的场合!

3.锁处于读模式时可以线程共享,而锁处于写模式时只能独占,所以读写锁又叫做共享-独占锁。

4.读写锁有两种策略:强读同步和强写同步

强读同步:
总是给读者更高的优先权,只要写者没有进行写操作,读者就可以获得访问权限

强写同步:
总是给写者更高的优先权,读者只能等到所有正在等待或者执行的写者完成后才能进行读

1)初始化的销毁读写锁

静态初始化:pthread_rwlock_t rwlock=PTHREAD_RWLOCK_INITIALIZER

动态初始化:int pthread_rwlock_init(rwlock,NULL),NULL代表读写锁采用默认属性

销毁读写锁:int pthread_rwlock_destory(rwlock)

在释放某个读写锁的资源之前,需要先通过pthread_rwlock_destory函数对读写锁进行清理。释放由pthread_rwlock_init函数分配的资源

如果你想要读写锁使用非默认属性,则attr不能为NULL,得给attr赋值

int pthread_rwlockattr_init(attr),给attr初始化

int pthread_rwlockattr_destory(attr),销毁attr

2)以写的方式获取锁,以读的方式获取锁,释放读写锁

int pthread_rwlock_rdlock(rwlock),以读的方式获取锁

int pthread_rwlock_wrlock(rwlock),以写的方式获取锁

int pthread_rwlock_unlock(rwlock),释放锁

上面两个获取锁的方式都是阻塞的函数,也就是说获取不到锁的话,调用线程不是立即返回,而是阻塞执行,在需要进行写操作的时候,这种阻塞式获取锁的方式是非常不好的,你想一下,我需要进行写操作,不但没有获取到锁,我还一直在这里等待,大大拖累效率

所以我们应该采用非阻塞的方式获取锁:

int pthread_rwlock_tryrdlock(rwlock)

int pthread_rwlock_trywrlock(rwlock)

互斥锁只允许一个线程进入临界区,而信号量允许多个线程进入临界区。

1)信号量初始化
int sem_init(&sem,pshared, v)
pshared为0,表示这个信号量是当前进程的局部信号量。
pshared为1,表示这个信号量可以在多个进程之间共享。
v为信号量的初始值。

返回值:
成功:0,失败:-1

2)信号量值的加减
int sem_wait(&sem):以原子操作的方式将信号量的值减去1

int sem_post(&sem):以原子操作的方式将信号量的值加上1

3)对信号量进行清理

int sem_destory(&sem)

㈣ linux多线程问题:pthread_join 和 pthread_exit 的区别 求指教

pthread_join一般是主线程来调用,用来等待子线程退出,因为是等待,所以是阻塞的,一般主线程会依次join所有它创建的子线程。
pthread_exit一般是子线程调用,用来结束当前线程。
子线程可以通过pthread_exit传递一个返回值,而主线程通过pthread_join获得该返回值,从而判断该子线程的退出是正常还是异常。

㈤ 浅谈linux 多线程编程和 windows 多线程编程的异同

很早以前就想写写linux下多线程编程和windows下的多线程编程了,但是每当写时又不知道从哪个地方写起,怎样把自己知道的东西都写出来,下面我就谈谈linux多线程及线程同步,并将它和windows的多线程进行比较,看看他们之间有什么相同点和不同的地方。
其实最开始我是搞windows下编程的,包括windows编程,windows 驱动,包括usb驱动,ndis驱动,pci驱动,1394驱动等等,同时也一条龙服务,做windows下的应用程序开发,后面慢慢的我又对linux开发产生比较深的兴趣和爱好,就转到搞linux开发了。在接下来的我还会写一些博客,主要是写linux编程和windows编程的区别吧,现在想写的是linux下usb驱动和windows下usb驱动开发的区别,这些都是后话,等我将linux多线程和windows多线程讲解完后,我再写一篇usb驱动,谈谈windows 和linux usb驱动的东东。好了,言归正传。开始将多线程了。
首先我们讲讲为什么要采用多线程编程,其实并不是所有的程序都必须采用多线程,有些时候采用多线程,性能还没有单线程好。所以我们要搞清楚,什么时候采用多线程。采用多线程的好处如下:
(1)因为多线程彼此之间采用相同的地址空间,共享大部分的数据,这样和多进程相比,代价比较节俭,因为多进程的话,启动新的进程必须分配给它独立的地址空间,这样需要数据表来维护代码段,数据段和堆栈段等等。
(2)多线程和多进程相比,一个明显的优点就是线程之间的通信了,对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。但是对于多线程就不一样了。他们之间可以直接共享数据,比如最简单的方式就是共享全局变量。但是共享全部变量也要注意哦,呵呵,必须注意同步,不然后果你知道的。呵呵。
(3)在多cpu的情况下,不同的线程可以运行不同的cpu下,这样就完全并行了。
反正我觉得在这种情况下,采用多线程比较理想。比如说你要做一个任务分2个步骤,你为提高工作效率,你可以多线程技术,开辟2个线程,第一个线程就做第一步的工作,第2个线程就做第2步的工作。但是你这个时候要注意同步了。因为只有第一步做完才能做第2步的工作。这时,我们可以采用同步技术进行线程之间的通信。
针对这种情况,我们首先讲讲多线程之间的通信,在windows平台下,多线程之间通信采用的方法主要有:
(1)共享全局变量,这种方法是最容易想到的,呵呵,那就首先讲讲吧,比如说吧,上面的问题,第一步要向第2步传递收据,我们可以之间共享全局变量,让两个线程之间传递数据,这时主要考虑的就是同步了,因为你后面的线程在对数据进行操作的时候,你第一个线程又改变了数据的内容,你不同步保护,后果很严重的。你也知道,这种情况就是读脏数据了。在这种情况下,我们最容易想到的同步方法就是设置一个bool flag了,比如说在第2个线程还没有用完数据前,第一个线程不能写入。有时在2个线程所需的时间不相同的时候,怎样达到最大效率的同步,就比较麻烦了。咱们可以多开几个缓冲区进行操作。就像生产者消费者一样了。如果是2个线程一直在跑的,由于时间不一致,缓冲区迟早会溢出的。在这种情况下就要考虑了,是不让数据写入还是让数据覆盖掉老的数据,这时候就要具体问题具体分析了。就此打住,呵呵。就是用bool变量控制同步,linux 和windows是一样的。
既然讲道了这里,就再讲讲其它同步的方法。同样 针对上面的这个问题,共享全局变量同步问题。除了采用bool变量外,最容易想到的方法就是互斥量了。呵呵,也就是传说中的加锁了。windows下加锁和linux下加锁是类似的。采用互斥量进行同步,要想进入那段代码,就先必须获得互斥量。
linux上互斥量的函数是:
windows下互斥量的函数有:createmutex 创建一个互斥量,然后就是获得互斥量waitforsingleobject函数,用完了就释放互斥量ReleaseMutex(hMutex),当减到0的时候 内核会才会释放其对象。下面是windows下与互斥的几个函数原型。
HANDLE WINAPI CreateMutex(
__in LPSECURITY_ATTRIBUTES lpMutexAttributes,
__in BOOL bInitialOwner,
__in LPCTSTR lpName
);
可以可用来创建一个有名或无名的互斥量对象
第一参数 可以指向一个结构体SECURITY_ATTRIBUTES一般可以设为null;
第二参数 指当时的函数是不是感应感应状态 FALSE为当前拥有者不会创建互斥
第三参数 指明是否是有名的互斥对象 如果是无名 用null就好。
DWORD WINAPI WaitForSingleObject(
__in HANDLE hHandle,
__in DWORD dwMilliseconds
);
第一个是 创建的互斥对象的句柄。第二个是 表示将在多少时间之后返回 如果设为宏INFINITE 则不会返回 直到用户自己定义返回。
对于linux操作系统,互斥也是类似的,只是函数不同罢了。在linux下,和互斥相关的几个函数也要闪亮登场了。
pthread_mutex_init函数:初始化一个互斥锁;
pthread_mutex_destroy函数:注销一个互斥锁;
pthread_mutex_lock函数:加锁,如果不成功,阻塞等待;
pthread_mutex_unlock函数:解锁;
pthread_mutex_trylock函数:测试加锁,如果不成功就立即返回,错误码为EBUSY;
至于这些函数的用法,google上一搜,就出来了,呵呵,在这里不多讲了。windows下还有一个可以用来保护数据的方法,也是线程同步的方式
就是临界区了。临界区和互斥类似。它们之间的区别是,临界区速度快,但是它只能用来同步同一个进程内的多个线程。临界区的获取和释放函数如下:
EnterCriticalSection() 进入临界区; LeaveCriticalSection()离开临界区。 对于多线程共享内存的东东就讲到这里了。
(2)采用消息机制进行多线程通信和同步,windows下面的的消息机制的函数用的多的就是postmessage了。Linux下的消息机制,我用的较少,就不在这里说了,如果谁熟悉的,也告诉我,呵呵。
(3)windows下的另外一种线程通信方法就是事件和信号量了。同样针对我开始举得例子,2个线程同步,他们之间传递信息,可以采用事件(Event)或信号量(Semaphore),比如第一个线程完成生产的数据后,就必须告诉第2个线程,他已经把数据准备好了,你可以来取走了。第2个线程就把数据取走。呵呵,这里可以采用消息机制,当第一个线程准备好数据后,就直接postmessage给第2个线程,按理说采用postmessage一个线程就可以搞定这个问题了。呵呵,不是重点,省略不讲了。
对于linux,也有类似的方法,就是条件变量了,呵呵,这里windows和linux就有不同了。要特别讲讲才行。
对于windows,采用事件和信号量同步时候,都会使用waitforsingleobject进行等待的,这个函数的第一个参数是一个句柄,在这里可以是Event句柄,或Semaphore句柄,第2个参数就是等待的延迟,最终等多久,单位是ms,如果这个参数为INFINITE,那么就是无限等待了。释放信号量的函数为ReleaseSemaphore();释放事件的函数为SetEvent。当然使用这些东西都要初始化的。这里就不讲了。Msdn一搜,神马都出来了,呵呵。神马都是浮云!
对于linux操作系统,是采用条件变量来实现类似的功能的。Linux的条件变量一般都是和互斥锁一起使用的,主要的函数有:
pthread_mutex_lock ,
pthread_mutex_unlock,
pthread_cond_init
pthread_cond_signal
pthread_cond_wait
pthread_cond_timewait
为了和windows操作系统进行对比,我用以下表格进行比较:

对照以上表格,总结如下:
(1) Pthread_cleanup_push,Pthread_cleanup_pop:
这一对函数push和pop的作用是当出现异常退出时,做一些清除操作,即当在push和pop函数之间异常退出,包括调用pthread_exit退出,都会执行push里面的清除函数,如果有多个push,注意是是栈,先执行后面的那个函数,在执行前面的函数,但是注意当在这2个函数之间通过return 退出的话,执不执行push后的函数就看pop函数中的参数是不是为0了。还有当没有异常退出时,等同于在这里面return退出的情况,即:当pop函数参数不为0时,执行清除操作,当pop函数参数为0时,不执行push函数中的清除函数。
(2)linux的pthread_cond_signal和SetEvent的不同点
Pthread_cond_singal释放信号后,当没有Pthread_cond_wait,信号马上复位了,这点和SetEvent不同,SetEvent是不会复位的。详解如下:
条件变量的置位和复位有2种常用模型:第一种模型是当条件变量置位时(signaled)以后,如果当前没有线程在等待,其状态会保持为置位(signaled),直到有等待的线程进入被触发,其状态才会变为unsignaled,这种模型以采用Windows平台上的Auto-set Event 为代表。
第2种模型则是Linux平台的pthread所采用的模型,当条件变量置位(signaled)以后,即使当前没有任何线程在等待,其状态也会恢复为复位(unsignaled)状态。
条件变量在Linux平台上的这种模型很难说好坏,在实际应用中,我们可以对
代码稍加改进就可以避免这种差异的发生。由于这种差异只会发生在触发没有被线程等待在条件变量的时刻,因此我们只需要掌握好触发的时机即可。最简单的做法是增加一个计数器记录等待线程的个数,在决定触发条件变量前检查该变量即可。
示例 使用 pthread_cond_wait() 和 pthread_cond_signal()
pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count;
decrement_count()
{
pthread_mutex_lock(&count_lock);
while (count == 0)
pthread_cond_wait(&count_nonzero, &count_lock);
count = count - 1;
pthread_mutex_unlock(&count_lock);
}
increment_count()
{
pthread_mutex_lock(&count_lock);
if (count == 0)
pthread_cond_signal(&count_nonzero);
count = count + 1;
pthread_mutex_unlock(&count_lock);
}
(3) 注意Pthread_cond_wait条件返回时互斥锁的解锁问题
extern int pthread_cond_wait __P ((pthread_cond_t *__cond,pthread_mutex_t *__mutex));
调用这个函数时,线程解开mutex指向的锁并被条件变量cond阻塞。线程可以被函数pthread_cond_signal和函数 pthread_cond_broadcast唤醒线程被唤醒后,它将重新检查判断条件是否满足,如果还不满足,一般说来线程应该仍阻塞在这里,被等待被下一次唤醒。如果在多线程中采用pthread_cond_wait来等待时,会首先释放互斥锁,当等待的信号到来时,再次获得互斥锁,因此在之后要注意手动解锁。举例如下:
#include
#include
#include
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; /*初始化互斥锁*/
pthread_cond_t cond = PTHREAD_COND_INITIALIZER; //初始化条件变量
void *thread1(void *);
void *thread2(void *);
int i=1;
int main(void)
{
pthread_t t_a;
pthread_t t_b;
pthread_create(&t_a,NULL,thread1,(void *)NULL);/*创建进程t_a*/
pthread_create(&t_b,NULL,thread2,(void *)NULL); /*创建进程t_b*/
pthread_join(t_b, NULL);/*等待进程t_b结束*/
pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&cond);
exit(0);
}
void *thread1(void *junk)
{
for(i=1;i<=9;i++)
{
printf("IN one\n");
pthread_mutex_lock(&mutex);//
if(i%3==0)
pthread_cond_signal(&cond);/*,发送信号,通知t_b进程*/
else
printf("thead1:%d\n",i);
pthread_mutex_unlock(&mutex);//*解锁互斥量*/
printf("Up Mutex\n");
sleep(3);
}
}
void *thread2(void *junk)
{
while(i<9)
{
printf("IN two \n");
pthread_mutex_lock(&mutex);
if(i%3!=0)
pthread_cond_wait(&cond,&mutex);/*等待*/
printf("thread2:%d\n",i);
pthread_mutex_unlock(&mutex);
printf("Down Mutex\n");
sleep(3);
}
}
输出如下:
IN one
thead1:1
Up Mutex
IN two
IN one
thead1:2
Up Mutex
IN one
thread2:3
Down Mutex
Up Mutex
IN one
thead1:4
Up Mutex
IN two
IN one
thead1:5
Up Mutex
IN one
Up Mutex
thread2:6
Down Mutex
IN two
thread2:6
Down Mutex
IN one
thead1:7
Up Mutex
IN one
thead1:8
Up Mutex
IN two
IN one
Up Mutex
thread2:9
Down Mutex
注意蓝色的地方,有2个thread2:6,其实当这个程序多执行几次,i=3和i=6时有可能多打印几个,这里就是竞争锁造成的了。
(4)另外要注意的Pthread_cond_timedwait等待的是绝对时间,这个和WaitForSingleObject是不同的,Pthread_cond_timedwait在网上也有讨论。如下:这个问题比较经典,我把它搬过来。
thread_a :
pthread_mutex_lock(&mutex);
//do something
pthread_mutex_unlock(&mutex)
thread_b:
pthread_mutex_lock(&mutex);
//do something
pthread_cond_timedwait(&cond, &mutex, &tm);
pthread_mutex_unlock(&mutex)
有如上两个线程thread_a, thread_b,现在如果a已经进入了临界区,而b同时超时了,那么b会从pthread_cond_timedwait返回吗?如果能返回,那岂不是a,b都在临界区?如果不能返回,那pthread_cond_timedwait的定时岂不是就不准了?
大家讨论有价值的2点如下:
(1) pthread_cond_timedwait (pthread_cond_t *cv, pthread_mutex_t *external_mutex, const struct timespec *abstime) -- This function is a time-based variant of pthread_cond_wait. It waits up to abstime amount of time for cv to be notified. If abstime elapses before cv is notified, the function returns back to the caller with an ETIME result, signifying that a timeout has occurred. Even in the case of timeouts, the external_mutex will be locked when pthread_cond_timedwait returns.
(2) 2.1 pthread_cond_timedwait行为和pthread_cond_wait一样,在返回的时候都要再次lock mutex.
2 .2pthread_cond_timedwait所谓的如果没有等到条件变量,超时就返回,并不确切。
如果pthread_cond_timedwait超时到了,但是这个时候不能lock临界区,pthread_cond_timedwait并不会立即返回,但是在pthread_cond_timedwait返回的时候,它仍在临界区中,且此时返回值为ETIMEDOUT。
关于pthread_cond_timedwait超时返回的问题,我也认同观点2。
附录:
int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict_attr,void*(*start_rtn)(void*),void *restrict arg);
返回值:若成功则返回0,否则返回出错编号
返回成功时,由tidp指向的内存单元被设置为新创建线程的线程ID。attr参数用于制定各种不同的线程属性。新创建的线程从start_rtn函数的地址开始运行,该函数只有一个无指针参数arg,如果需要向start_rtn函数传递的参数不止一个,那么需要把这些参数放到一个结构中,然后把这个结构的地址作为arg的参数传入。
linux下用C开发多线程程序,Linux系统下的多线程遵循POSIX线程接口,称为pthread。
由 restrict 修饰的指针是最初唯一对指针所指向的对象进行存取的方法,仅当第二个指针基于第一个时,才能对对象进行存取。对对象的存取都限定于基于由 restrict 修饰的指针表达式中。 由 restrict 修饰的指针主要用于函数形参,或指向由 malloc() 分配的内存空间。restrict 数据类型不改变程序的语义。 编译器能通过作出 restrict 修饰的指针是存取对象的唯一方法的假设,更好地优化某些类型的例程。
第一个参数为指向线程标识符的指针。
第二个参数用来设置线程属性。
第三个参数是线程运行函数的起始地址。
第四个参数是运行函数的参数。
因为pthread不是linux系统的库,所以在编译时注意加上-lpthread参数,以调用静态链接库。
终止线程:
如果在进程中任何一个线程中调用exit或_exit,那么整个进行会终止,线程正常的退出方式有:
(1) 线程从启动例程中返回(return)
(2) 线程可以被另一个进程终止(kill);
(3) 线程自己调用pthread_exit函数
#include
pthread_exit
线程等待:
int pthread_join(pthread_t tid,void **rval_ptr)
函数pthread_join用来等待一个线程的结束。函数原型为:
extern int pthread_join __P (pthread_t __th, void **__thread_return);
第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。
对于windows线程的创建东西,就不列举了,msdn上 一搜就出来了。呵呵。今天就讲到这里吧,希望是抛砖引玉,大家一起探讨,呵呵。部分内容我也是参考internet的,特此对原作者表示感谢!

㈥ Linux 多线程编程(二)2019-08-10

三种专门用于线程同步的机制:POSIX信号量,互斥量和条件变量.

在Linux上信号量API有两组,一组是System V IPC信号量,即PV操作,另外就是POSIX信号量,POSIX信号量的名字都是以sem_开头.

phshared参数指定信号量的类型,若其值为0,就表示这个信号量是当前进程的局部信号量,否则该信号量可以在多个进程之间共享.value值指定信号量的初始值,一般与下面的sem_wait函数相对应.

其中比较重要的函数sem_wait函数会以原子操作的方式将信号量的值减一,如果信号量的值为零,则sem_wait将会阻塞,信号量的值可以在sem_init函数中的value初始化;sem_trywait函数是sem_wait的非阻塞版本;sem_post函数将以原子的操作对信号量加一,当信号量的值大于0时,其他正在调用sem_wait等待信号量的线程将被唤醒.
这些函数成功时返回0,失败则返回-1并设置errno.

生产者消费者模型:
生产者对应一个信号量:sem_t procer;
消费者对应一个信号量:sem_t customer;
sem_init(&procer,2)----生产者拥有资源,可以工作;
sem_init(&customer,0)----消费者没有资源,阻塞;

在访问公共资源前对互斥量设置(加锁),确保同一时间只有一个线程访问数据,在访问完成后再释放(解锁)互斥量.
互斥锁的运行方式:串行访问共享资源;
信号量的运行方式:并行访问共享资源;
互斥量用pthread_mutex_t数据类型表示,在使用互斥量之前,必须使用pthread_mutex_init函数对它进行初始化,注意,使用完毕后需调用pthread_mutex_destroy.

pthread_mutex_init用于初始化互斥锁,mutexattr用于指定互斥锁的属性,若为NULL,则表示默认属性。除了用这个函数初始化互斥所外,还可以用如下方式初始化:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER。
pthread_mutex_destroy用于销毁互斥锁,以释放占用的内核资源,销毁一个已经加锁的互斥锁将导致不可预期的后果。

pthread_mutex_lock以原子操作给一个互斥锁加锁。如果目标互斥锁已经被加锁,则pthread_mutex_lock则被阻塞,直到该互斥锁占有者把它给解锁.
pthread_mutex_trylock和pthread_mutex_lock类似,不过它始终立即返回,而不论被操作的互斥锁是否加锁,是pthread_mutex_lock的非阻塞版本.当目标互斥锁未被加锁时,pthread_mutex_trylock进行加锁操作;否则将返回EBUSY错误码。注意:这里讨论的pthread_mutex_lock和pthread_mutex_trylock是针对普通锁而言的,对于其他类型的锁,这两个加锁函数会有不同的行为.
pthread_mutex_unlock以原子操作方式给一个互斥锁进行解锁操作。如果此时有其他线程正在等待这个互斥锁,则这些线程中的一个将获得它.


三个打印机轮流打印:

输出结果:

如果说互斥锁是用于同步线程对共享数据的访问的话,那么条件变量就是用于在线程之间同步共享数据的值.条件变量提供了一种线程之间通信的机制:当某个共享数据达到某个值时,唤醒等待这个共享数据的线程.
条件变量会在条件不满足的情况下阻塞线程.且条件变量和互斥量一起使用,允许线程以无竞争的方式等待特定的条件发生.

其中pthread_cond_broadcast函数以广播的形式唤醒所有等待目标条件变量的线程,pthread_cond_signal函数用于唤醒一个等待目标条件变量线程.但有时候我们可能需要唤醒一个固定的线程,可以通过间接的方法实现:定义一个能够唯一标识目标线程的全局变量,在唤醒等待条件变量的线程前先设置该变量为目标线程,然后采用广播的方式唤醒所有等待的线程,这些线程被唤醒之后都检查该变量以判断是否是自己.

采用条件变量+互斥锁实现生产者消费者模型:

运行结果:

阻塞队列+生产者消费者

运行结果:

㈦ linux系统下,c语言pthread多线程编程传参问题

3个线程使用的都是同一个info

代码 Info_t *info= (Info_t *)malloc(sizeof(Info_t));只创建了一个info

pthread_create(&threads[i],NULL,calMatrix,(void *)info); 三个线程使用的是同一个

我把你的代码改了下:

#include<stdio.h>
#include<stdlib.h>
#include<pthread.h>

intmtc[3]={0};//resultmatrix

typedefstruct
{
intprank;
int*mta;
int*mtb;
}Info_t;

void*calMatrix(void*arg)
{
inti;
Info_t*info=(Info_t*)arg;
intprank=info->prank;
fprintf(stdout,"calMatrix:prankis%d ",prank);

for(i=0;i<3;i++)
mtc[prank]+=info->mta[i]*info->mtb[i];

returnNULL;
}

intmain(intargc,char**argv)
{
inti,j,k=0;
intmta[3][3];
intmtb[3]={1};
Info_t*info=(Info_t*)malloc(sizeof(Info_t)*3);

for(i=0;i<3;i++)
for(j=0;j<3;j++)
mta[i][j]=k++;
/*3threads*/
pthread_t*threads=(pthread_t*)malloc(sizeof(pthread_t)*3);
fprintf(stdout," ");fflush(stdout);
for(i=0;i<3;i++)
{
info[i].prank=i;
info[i].mta=mta[i];
info[i].mtb=mtb;
pthread_create(&threads[i],NULL,calMatrix,(void*)(&info[i]));
}
for(i=0;i<3;i++)
pthread_join(threads[i],NULL);

fprintf(stdout," ====thematrixresult==== ");
fflush(stdout);

for(i=0;i<3;i++)
{
fprintf(stdout,"mtc[%d]=%d ",i,mtc[i]);
fflush(stdout);
}
return0;
}

矩阵的计算我忘记了,你运行看看结果对不对

㈧ 如何实现多线程控制

1、使用pthread库执行多线程,这个是Linux下的线程库 Windows下应该有自己的API,不过这种东西一般还是以Linux为标准。pthread_create()创建一碰圆凳个线程,传入fun()的函数指针就行了。

2、例程:
#include <pthread.h>
#include <stdio.h>
#include <sys/time.h>
#include <string.h>
#define MAX 10
pthread_t thread[2];
pthread_mutex_t mut;
int number=0, i;
void *thread1()
{
printf ("thread1 : I'm thread 1\n");
for (i = 0; i < MAX; i++)
{
printf("thread1 : number = %d\n",number);
pthread_mutex_lock(&mut);
number++;
pthread_mutex_unlock(&mut);
sleep(2);
}
printf("thread1 :主函数在等我完成任务吗?\n");
pthread_exit(NULL);
}
void *thread2()
{
printf("thread2 : I'm thread 2\n");
for (i = 0; i < MAX; i++)
{
printf("thread2 : number = %d\n",number);
pthread_mutex_lock(&mut);
number++;
pthread_mutex_unlock(&mut);
sleep(3);
}
printf("thread2 :主函数在等我完成任务吗?\n");
pthread_exit(NULL);
}
void thread_create(void)
{
int temp;
memset(&thread, 0, sizeof(thread)); //comment1
/*创建线程*/
if((temp = pthread_create(&thread[0], NULL, thread1, NULL)) != 0) //comment2
printf("线程1创建失败!\n");
else
printf("线程笑旅1被创建\n");
if((temp = pthread_create(&thread[1], NULL, thread2, NULL)) != 0) //comment3
printf("线程2创建失败");
else
printf("线程2被创建\n");
}
void thread_wait(void)
{
/*等待线程结束*/
if(thread[0] !=0) { //comment4
pthread_join(thread[0],NULL);
printf("线程1已经结束\n");
}
if(thread[1] !=0) { //comment5
pthread_join(thread[1],NULL);
printf("线程2已经结束\n");
}
}
int main()
{
/*用默认属性初始化互斥锁*/
pthread_mutex_init(&mut,NULL);
printf("我是主函数哦,我正在创建线程,呵呵\n");
thread_create();
printf("我是主函数腔搜哦,我正在等待线程完成任务阿,呵呵\n");
thread_wait();
return 0;
}

㈨ C++在linux下怎么多线程

#ifndefTHREAD_H_
#defineTHREAD_H_
#include<unistd.h>
#include<pthread.h>
classRunnable
{
public:
//运行实体
virtualvoidrun()=0;
};
//线程类
classThread:publicRunnable
{
private:
//线程初始化号
staticintthread_init_number;
//当前线程初始化序号
intcurrent_thread_init_number;
//线程体
Runnable*target;
//当前线程的线程ID
pthread_ttid;
//线程的状态
intthread_status;
//线程属性
pthread_attr_tattr;
//线程优先级
sched_paramparam;
//获取执行方法的指针
staticvoid*run0(void*pVoid);
//内部执行方法
void*run1();
//获取线程序号
staticintget_next_thread_num();
public:
//线程的状态-新建
staticconstintTHREAD_STATUS_NEW=0;
//线程的状态-正在运行
staticconstintTHREAD_STATUS_RUNNING=1;
//线程的状态-运行结束
staticconstintTHREAD_STATUS_EXIT=-1;
//构造函数
Thread();
//构造函数
Thread(Runnable*target);
//析构
~Thread();
//线程的运行体
voidrun();
//开始执行线程
boolstart();
//获取线程状态
intget_state();
//等待线程直至退出
voidjoin();
//等待线程退出或者超时
voidjoin(unsignedlongmillis_time);
//比较两个线程时候相同,通过current_thread_init_number判断
booloperator==(constThread*other_pthread);
//获取this线程ID
pthread_tget_thread_id();
//获取当前线程ID
staticpthread_tget_current_thread_id();
//当前线程是否和某个线程相等,通过tid判断
staticboolis_equals(Thread*iTarget);
//设置线程的类型:绑定/非绑定
voidset_thread_scope(boolisSystem);
//获取线程的类型:绑定/非绑定
boolget_thread_scope();
//设置线程的优先级,1-99,其中99为实时,意外的为普通
voidset_thread_priority(intpriority);
//获取线程的优先级
intget_thread_priority();
};
intThread::thread_init_number=1;
inlineintThread::get_next_thread_num()
{
returnthread_init_number++;
}
void*Thread::run0(void*pVoid)
{
Thread*p=(Thread*)pVoid;
p->run1();
returnp;
}
void*Thread::run1()
{
thread_status=THREAD_STATUS_RUNNING;
tid=pthread_self();
run();
thread_status=THREAD_STATUS_EXIT;
tid=0;
pthread_exit(NULL);
}
voidThread::run()
{
if(target!=NULL)
{
(*target).run();
}
}
Thread::Thread()
{
tid=0;
thread_status=THREAD_STATUS_NEW;
current_thread_init_number=get_next_thread_num();
pthread_attr_init(&attr);
}
Thread::Thread(Runnable*iTarget)
{
target=iTarget;
tid=0;
thread_status=THREAD_STATUS_NEW;
current_thread_init_number=get_next_thread_num();
pthread_attr_init(&attr);
}
Thread::~Thread()
{
pthread_attr_destroy(&attr);
}
boolThread::start()
{
returnpthread_create(&tid,&attr,run0,this);
}
inlinepthread_tThread::get_current_thread_id()
{
returnpthread_self();
}
inlinepthread_tThread::get_thread_id()
{
returntid;
}
inlineintThread::get_state()
{
returnthread_status;
}
voidThread::join()
{
if(tid>0)
{
pthread_join(tid,NULL);
}
}
voidThread::join(unsignedlongmillis_time)
{
if(tid==0)
{
return;
}
if(millis_time==0)
{
join();
}
else
{
unsignedlongk=0;
while(thread_status!=THREAD_STATUS_EXIT&&k<=millis_time)
{
usleep(100);
k++;
}
}
}
boolThread::operator==(constThread*other_pthread)
{
if(other_pthread==NULL)
{
returnfalse;
}if(current_thread_init_number==(*other_pthread).current_thread_init_number)
{
returntrue;
}
returnfalse;
}
boolThread::is_equals(Thread*iTarget)
{
if(iTarget==NULL)
{
returnfalse;
}
returnpthread_self()==iTarget->tid;
}
voidThread::set_thread_scope(boolisSystem)
{
if(isSystem)
{
pthread_attr_setscope(&attr,PTHREAD_SCOPE_SYSTEM);
}
else
{
pthread_attr_setscope(&attr,PTHREAD_SCOPE_PROCESS);
}
}
voidThread::set_thread_priority(intpriority)
{
pthread_attr_getschedparam(&attr,&param);
param.__sched_priority=priority;
pthread_attr_setschedparam(&attr,&param);
}
intThread::get_thread_priority(){
pthread_attr_getschedparam(&attr,&param);
returnparam.__sched_priority;
}
#endif/*THREAD_H_*/

㈩ 求教Linux多个线程 可不可以同时调用一个函数

使用pthread库执行多线程,这个是Linux下的线程库 Windows下腔卖应该有自己的API,不过这种州档东西一般还是以Linux为标准。pthread_create()创建一个线程,传入fun()的函数指针就行了。 然后这伍迹逗个Beep()的需求要进行线程间通信,可以用共享内存的方法,...

阅读全文

与pthreadlinux多线程相关的资料

热点内容
程序员乱码是什么意思 浏览:368
交友app怎么删除动态 浏览:88
男士穿衣哪个app好 浏览:34
如何把桌面软件改造成app 浏览:738
我的世界如何打开最近玩的服务器 浏览:382
程序员试用期汇报问题协助怎么写 浏览:127
抖音算法到底是什么 浏览:126
哪个vlan技术对报文加密 浏览:570
单片机定时电路 浏览:672
山西平台服务器云主机 浏览:700
按摩肚脐解压视频 浏览:989
php55安装教程 浏览:137
云服务器怎么查找本机域名 浏览:22
qd123y压缩机参数 浏览:385
程序员妈妈怀孕 浏览:490
金普国际编程 浏览:537
java什么是引用类型 浏览:944
这是命令吗txt 浏览:314
支付宝android包名 浏览:154
eclipsemaven命令 浏览:68