导航:首页 > 操作系统 > linux驱动异步通知

linux驱动异步通知

发布时间:2023-05-09 22:10:38

linux异步通知滞后多久

取敏并决于应用程序的负载。
Linux异步通知的滞后时间取决于多种因素羡拿樱,比兄丛如应用程序的负载、操作系统的负载、网络延迟等等。
一般来说,异步通知的响应时间比同步通知快,但是仍然可能存在一定的滞后。在实际应用中,需要根据具体情况进行调整和测试,以确保异步通知的响应时间满足应用程序的需求。

⑵ linux驱动模块中添加异步通知机制需要完成哪些工作

一 驱动方面:
1. 在设备抽象的数据结构中增加一个struct fasync_struct的指针
2. 实现设备操作中的fasync函数,这个函数很简单,其主体就是调用内核的fasync_helper函数。
3. 在需要向用户空间通知的地方(例如中断中)调用内核的kill_fasync函数。
4. 在驱动的release方法中调用前面定义的fasync函数
呵呵,简单吧,就三点。其中fasync_helper和kill_fasync都是内核函数,我们只需要调用就可以了。在1中定义的指针是一个重要参数,fasync_helper和kill_fasync会使用这个参数。

二 应用层方面
1. 利用signal或者sigaction设置SIGIO信号的处理函数
2. fcntl的F_SETOWN指令设置当前进程为设备文件owner
3. fcntl的F_SETFL指令设置FASYNC标志
完成了以上的工作的话,当内核执行到kill_fasync函数,用户空间SIGIO函数的处理函数就会被调用了。
呵呵,看起来不是很复杂把,让我们结合具体代码看看就更明白了。
先从应用层代码开始吧:

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <fcntl.h>

#include <signal.h>

#include <unistd.h>

#define MAX_LEN 100

//处理函数,没什么好讲的,用户自己定义

void input_handler(int num)
{

char data[MAX_LEN];

int len;
//读取并输出STDIN_FILENO上的输入

len = read(STDIN_FILENO, &data, MAX_LEN);
data[len] = 0;
printf("input available:%s\n", data);
}

void main()

{

int oflags;

//启动信号驱动机制,将SIGIO信号同input_handler函数关联起来,一旦产生SIGIO信号,就会执行input_handler

signal(SIGIO, input_handler);

//STDIN_FILENO是打开的设备文件描述符,F_SETOWN用来决定操作是干什么的,getpid()是个系统调用,

//功能是返回当前进程的进程号,整个函数的功能是STDIN_FILENO设置这个设备文件的拥有者为当前进程。
fcntl(STDIN_FILENO, F_SETOWN, getpid());

//得到打开文件描述符的状态

oflags = fcntl(STDIN_FILENO, F_GETFL);

//设置文件描述符的状态为oflags | FASYNC属性,一旦文件描述符被设置成具有FASYNC属性的状态,
//也就是将设备文件切换到异步操作模式。这时系统就会自动调用驱动程序的fasync方法。
fcntl(STDIN_FILENO, F_SETFL, oflags | FASYNC);

//最后进入一个死循环,程序什么都不干了,只有信号能激发input_handler的运行

//如果程序中没有这个死循环,会立即执行完毕
while (1);
}
再看驱动层代码,驱动层其他部分代码不变,就是增加了一个fasync方法的实现以及一些改动

//首先是定义一个结构体,其实这个结构体存放的是一个列表,这个

//列表保存的是一系列设备文件,SIGIO信号就发送到这些设备上
static struct fasync_struct *fasync_queue;

//fasync方法的实现
static int my_fasync(int fd, struct file * filp, int on)

{

int retval;
//将该设备登记到fasync_queue队列中去

retval=fasync_helper(fd,filp,on,&fasync_queue);
if(retval<0)

{
return retval;

}
return 0;

}
在驱动的release方法中我们再调用my_fasync方法

int my_release(struct inode *inode, struct file *filp)

{

//..processing..

drm_fasync(-1, filp, 0);

//..processing..
}这样后我们在需要的地方(比如中断)调用下面的代码,就会向fasync_queue队列里的设备发送SIGIO信号
,应用程序收到信号,执行处理程序
if (fasync_queue)
kill_fasync(&fasync_queue, SIGIO, POLL_IN);

⑶ linux驱动怎样通知应用程序

驱动程序一般是通过模块注入内核,用字符驱动程序举个例子:
1.编写字符驱动程序需要在内核中注册设备和中断程序,还有file_ops里面的open,read,release等函数
2.注册成功后在/proc/device文件里面可以看到你注册的设备名称和主设备号,/proc/interrupt文件中可以看到注册的中断
3.为设备创建文件节点,mknod /dev/char_dev_test c 主设备号 次设备号,于是就在/dev/里面生成一个char_dev_test 设备文件
4,应用程序通过文件操作函数,比如open,read等操作char_dev_test 文件
eg: FILE* p=open("/dev/char_dev_test","rb");
if(p==NULL) { printf("error,can't open dev file!"); return -1;}
char buf[1024];
read(p,buf,size_t);
//其中open是调用的注册进入内核的file_ops的open函数,read是调用的file_ops的read函数,里面一般有_to_user,将内核数据复制到用户空间,也就是复制到了buf中。

⑷ linux异步通知之驱动层怎么释放SIGUSR1/SIGUSR2

首先,Linux中的信号可以通过kill -l命令获取,

如上图所示,编号为1 ~ 31的信号为传统UNIX支持的信号,是不可靠信号(非实时的),编号为32 ~ 63的信号是后来扩充的,称做可靠信号(实时信号)。不可靠信号和可靠信号的区别在于前者不支持排队,可能会造成信号丢失,而后者不会。

其次,SIGUSR1 ,这是留给用户使用的信号。一般在编程中并碧使用。举例说明:sigqueue向本进程发送数据的信号,C语言代码如下 :
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
void myhandler(int signo,siginfo_t *si,void *ucontext);
int main(){
union sigval val;//定义一个携带数据的共用体
struct sigaction oldact,act;
act.sa_sigaction=myhandler;
act.sa_flags=SA_SIGINFO;//表示使用sa_sigaction指示的函数,处理完恢复默认,不阻塞处理过程中到达下在被处理的信号
//注册信号处理函数
sigaction(SIGUSR1,&act,&oldact);
char data[100];
int num=0;
while(num<10){
sleep(2);
printf("等待SIGUSR1信号的到来\n");
sprintf(data,"%d",num++);
val.sival_ptr=data;
sigqueue(getpid(),SIGUSR1,val);//向本团态进程发送一个信号塌蔽源
}

}
void myhandler(int signo,siginfo_t *si,void *ucontext){
printf("已经收到SIGUSR1信号\n");
printf("%s\n",(char*)(si->si_ptr));

}

⑸ Linux设备驱动的介绍

《Linux设备驱动开发详解(第2版)》是一本介绍Linux设备友拍驱动开发理论、框架与实例的书,《Linux设备驱动开发详解(第2版)》基于LDD6410开发板,以Linux2.6 版本内核为蓝本,详好旦羡细介绍自旋锁、信号量、完成量、中断顶/底半部、定时器、内存和I/O映射以及异步通知、阻塞I/O、非阻塞I/O等Linux设备驱动理论;字符设备、块设备、TTY设备、I2C设备、LCD设备、音频设备、USB设备、网络设备、PCI设备等Linux设备驱动的架构和框架中各个复杂数据架构和函数的关系,并讲解了Linux驱动开发的大量实例,使读者能够独立迟宽开发各类Linux设备驱动。《Linux设备驱动开发详解(第2版)》内容全面,实例丰富,操作性强,语言通俗易懂,适合广大Linux开发人员、嵌入式工程师参考使用。

⑹ 如何确认Linux系统的异步IO是否启用,DBA需要关注异步IO是否启用

就是IO不阻塞即使没有数据可读,或者空间可写时。异步IO都返回,不管如搭戚磨何情况。简单点的意思就是进程不会阻塞在你读写调用异步IO系统调用的时候。所以你的执行流可以去做其知斗它的事情,当你确实要确认数据读写成功的时候,你在用aio_return这个函数去判断读写成功了吗。如果你想耗费cpu那你就一值调用aio_return轮询结果。如果想睡眠等待读写完成,那么你调用aio_suspend这个函数,你就会睡眠,当读写完成时,内核会发信号给你,这时,就会执行信号处理函数,并唤醒此进程。要充分理解异步IO,最好把信号和异步通知一起搞懂。如果会写驱动的话,最好自己去实现IO的这些功能,比如阻塞IO,非阻塞IO,轮仔州询,异步通知,异步IO等等,其中又涉及到并发和竞争的问题。

⑺ 当linux应用程序中存在多个异步通知时怎样处理

驱动程序运行在内核空间中,应用程序运行在用户空间中,两者是不能直接通信的。但在实际应用中,在设备已经准备好的时候,我们希望通知用户程序设备已经ok,用户程序可以读取了,这样应用程序就不需要一直查询该设备的状态,从而节约了资源,这就是异步通知。好,那下一个问题就来了,这个过程如何实现呢?简单,两方面的工作。

一 驱动方面:
1. 在设备抽象的数据结构中增加一个struct fasync_struct的指针
2. 实现设备操作中的fasync函数,这个函数很简单,其主体就是调用内核的fasync_helper函数。
3. 在需要向用户空间通知的地方(例如中断中)调用内核的kill_fasync函数。
4. 在驱动的release方法中调用前面定义的fasync函数
呵呵,简单吧,就三点。其中fasync_helper和kill_fasync都是内核函数,我们只需要调用就可以了。在
1中定义的指针是一个重要参数,fasync_helper和kill_fasync会使用这个参数。

二 应用层方面
1. 利用signal或者sigaction设置SIGIO信号的处理函数
2. fcntl的F_SETOWN指令设置当前进程为设备文件owner
3. fcntl的F_SETFL指令设置FASYNC标志
完成了以上的工作的话,当内核执行到kill_fasync函数,用户空间SIGIO函数的处理函数就会被调用了。
呵呵,看起来不是很复杂把,让我们结合具体代码看看就更明白了。
先从应用层代码开始吧:
#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <fcntl.h>

#include <signal.h>

#include <unistd.h>

#define MAX_LEN 100

//处理函数,没什么好讲的,用户自己定义

void input_handler(int num)
{

char data[MAX_LEN];

int len;
//读取并输出STDIN_FILENO上的输入

len = read(STDIN_FILENO, &data, MAX_LEN);
data[len] = 0;
printf("input available:%s\n", data);
}

void main()

{

int oflags;

//启动信号驱动机制,将SIGIO信号同input_handler函数关联起来,一旦产生SIGIO信号,就会执行input_handler

signal(SIGIO, input_handler);

//STDIN_FILENO是打开的设备文件描述符,F_SETOWN用来决定操作是干什么的,getpid()是个系统调用,

//功能是返回当前进程的进程号,整个函数的功能是STDIN_FILENO设置这个设备文件的拥有者为当前进程。
fcntl(STDIN_FILENO, F_SETOWN, getpid());

//得到打开文件描述符的状态

oflags = fcntl(STDIN_FILENO, F_GETFL);

//设置文件描述符的状态为oflags | FASYNC属性,一旦文件描述符被设置成具有FASYNC属性的状态,
//也就是将设备文件切换到异步操作模式。这时系统就会自动调用驱动程序的fasync方法。
fcntl(STDIN_FILENO, F_SETFL, oflags | FASYNC);

//最后进入一个死循环,程序什么都不干了,只有信号能激发input_handler的运行

//如果程序中没有这个死循环,会立即执行完毕
while (1);
}
再看驱动层代码,驱动层其他部分代码不变,就是增加了一个fasync方法的实现以及一些改动
//首先是定义一个结构体,其实这个结构体存放的是一个列表,这个

//列表保存的是一系列设备文件,SIGIO信号就发送到这些设备上
static struct fasync_struct *fasync_queue;

//fasync方法的实现
static int my_fasync(int fd, struct file * filp, int on)

{

int retval;
//将该设备登记到fasync_queue队列中去

retval=fasync_helper(fd,filp,on,&fasync_queue);
if(retval<0)

{
return retval;

}
return 0;

}
在驱动的release方法中我们再调用my_fasync方法
int my_release(struct inode *inode, struct file *filp)

{

//..processing..

drm_fasync(-1, filp, 0);

//..processing..
}
这样后我们在需要的地方(比如中断)调用下面的代码,就会向fasync_queue队列里的设备发送SIGIO信号
,应用程序收到信号,执行处理程序
if (fasync_queue)
kill_fasync(&fasync_queue, SIGIO, POLL_IN);
好了,这下大家知道该怎么用异步通知机制了吧?

以下是几点说明[1]:
1 两个函数的原型
int fasync_helper(struct inode *inode, struct file *filp, int mode, struct fasync_struct **fa);
一个"帮忙者", 来实现 fasync 设备方法. mode 参数是传递给方法的相同的值, 而 fa 指针指向一个设
备特定的 fasync_struct *

void kill_fasync(struct fasync_struct *fa, int sig, int band);
如果这个驱动支持异步通知, 这个函数可用来发送一个信号到登记在 fa 中的进程.

2.
fasync_helper 用来向等待异步信号的设备链表中添加或者删除设备文件, kill_fasync被用来通知拥有相关设备的进程. 它的参数是被传递的信号(常常是 SIGIO)和 band, 这几乎都是 POLL_IN[25](但是这可用来发送"紧急"或者带外数据, 在网络代码里).

⑻ QT编程中,怎样实现linux中的异步通知功能

你大可使用宏Q_SIGNALS
BTW,既然是重名 ,转换个思路

⑼ 在设Linux在设备驱动和应用程序的异步通知交互中,在设备驱动程序中增加信号释放的作用是

在设备驱动和应用程序的异步通知交互中,仅仅在应用程序端捕获信号是不够的,因为信号的源头在设备驱动端。因此,应该在合适的时机让设备驱动释放信号,在设备驱动程序中增加信号释放的相关代码。为了使设备支持异步通知机制,驱动程序中涉及3项工作。
1)支持F_SETOWN命令,能在这个控制命令处理中设置filp->f_owner为对应进程ID。不过此项工作已由内核完成,设备驱动无须处理。
2)支持F_SETFL命令的处理,每当FASYNC标志改变时,驱动程序中的fasync()函数将得以执行。因此,驱动中应该实现fasync()函数。
3)在设备资源可获得时,调用kill_fasync()函数激发相应的信号。
驱动中的上述3项工作和应用程序中的3项工作是一一对应的,设备驱动中异步通知编程比较简单,主要用到一项数据结构和两个函数。数据结构是fasync_struct结构体,两个函数分别是:
1)处理FASYNC标志变更的函数。
int fasync_helper(int fd, struct file *filp, int mode, struct fasync_struct **fa);
2)释放信号用的函数。
void kill_fasync(struct fasync_struct **fa, int sig, int band);
和其他的设备驱动一样,将fasync_struct结构体指针放在设备结构体中仍然是最佳选择。
在设备驱动的fasync()函数中,只需要简单地将该函数的3个参数以及fasync_struct结构体指针的指针作为第4个参数传入fasync_helper()函数即可。
在设备资源可以获得时,应该调用kill_fasync()释放SIGIO信号。在可读时,第3个参数设置为POLL_IN,在可写时,第3个参数设置为POLL_OUT。

⑽ 异步通知是什么意思

问题一:什么叫异步通知? 不知道你是在学web开发吗?是AJAX?

问题二:java 异步通知和同步通知 什么意思 怎么处理 同步就是指多个操作在同一个时间段内只能有一个线程进行,其他线程要等待此线程完成之后才可以继续执行。通饥友过wait()和notify()方法分别等待和通知,一个线程执行完后唤醒另一个线程执行,这是我的理解,我也是初学者。

问题三:php支付宝功能中说到"服务器异步通知页面路径"是什么意思 如果支付之后,要确定业务逻辑没有问题,,需要检查返回地址是否是一个存在的地址!

问题四:支付宝支付回掉同步通知和异步通知哪个先执数塌行 这个烂毕槐是移动支付的图,5,就是同步通知,8,是异步通知;先后关系很明显,关键是同步通知和异步通知机制不同的。

问题五:请详细描述通知的验签流程,并说明同步通知和异步通知在验签上有何区别 是否MD5 加密用支付宝接口提供的函数?0266

问题六:求助,支付系统的异步通知实现 登陆支付宝,申请商家,通过后,到支付宝论坛下载和你申请的接口相应的接口文档,对接即可

问题七:java中异步处理和同步处理分别是什么意思 异步处理就是调用后不能马上得到结果,需要在后期查询或接收事件获得执行结果。不需要死等可以在等待时做其它处理。同步处理就是调用后必须等到结果后才算完成调用。

问题八:当linux应用程序中存在多个异步通知时怎样处理 驱动程序运行在内核空间中,应用程序运行在用户空间中,两者是不能直接通信的。但在实际应用中,在设备已经准备好的时候,我们希望通知用户程序设备已经ok,用户程序可以读取了,这样应用程序就不需要一直查询该设备的状态,从而节约了资源,这就是异步通知。好,那下一个问题就来了,这个过程如何实现呢?简单,两方面的工作。
一 驱动方面:
1. 在设备抽象的数据结构中增加一个struct fasync_struct的指针
2. 实现设备操作中的fasync函数,这个函数很简单,其主体就是调用内核的fasync_helper函数。
3. 在需要向用户空间通知的地方(例如中断中)调用内核的kill_fasync函数。
4. 在驱动的release方法中调用前面定义的fasync函数
呵呵,简单吧,就三点。其中fasync_helper和kill_fasync都是内核函数,我们只需要调用就可以了。在
1中定义的指针是一个重要参数,fasync_helper和kill_fasync会使用这个参数。
二 应用层方面
1. 利用signal或者sigaction设置SIGIO信号的处理函数
2. ftl的F_SETOWN指令设置当前进程为设备文件owner
3. ftl的F_SETFL指令设置FASYNC标志
完成了以上的工作的话,当内核执行到kill_fasync函数,用户空间SIGIO函数的处理函数就会被调用了。
呵呵,看起来不是很复杂把,让我们结合具体代码看看就更明白了。
先从应用层代码开始吧:
#include
#include
#include
#include
#include
#include
#define MAX_LEN 100
处理函数,没什么好讲的,用户自己定义
void input_handler(int num)
{
char data[MAX_LEN];
int len;
读取并输出STDIN_FILENO上的输入
len = read(STDIN_FILENO, &data, MAX_LEN);
data[len] = 0;
printf(input available:%s\n, data);
}
void main()
{
int oflags;
启动信号驱动机制,将SIGIO信号同input_handler函数关联起来,一旦产生SIGIO信号,就会执行input_handler
signal(SIGIO, input_handler);
STDIN_FILENO是打开的设备文件描述符,F_SETOWN用来决定操作是干什么的,getpid()是个系统调用,
功能是返回当前进程的进程号,整个函数的功能是STDIN_FILENO设置这个设备文件的拥有者为当前进程。
ftl(STDIN_FILENO, F_SETOWN, getpid());
得到打开文件描述符的状态
......>>

问题九:什么叫异步提交 异步传输是面向字符的传输,它的单位是字符;而同步传输是面向比特的传输,它的单位是桢,它传输的时候要求接受方和发送方的时钟是保持一致的。 具体来说,异步传输是将比特分成小组来进行传送。一般每个小组是一个8位字符,在每个小组的头部和尾部都有一个开始位和一个停止位,它在传送过程中接收方和发送方的时钟不要求一致,也就是说,发送方可以在任何时刻发送这些小组,而接收方并不知道它什么时候到达。一个最明显的例子就是计算机键盘和主机的通信,按下一个键的同时向主机发送一个8比特位的ASCII代 码,键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。这是一个典型的异步传输过程。异步传输存在 一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说 话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收 和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号。步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。

问题十:微信支付 异步通知怎么拿到微信的数据 我是异步通知的url里带有url参数,结果回传的时候给我弄没了,取不到,因为是多个支付平台的,异步通知用的是同一个处理方式,要通过这个参数区分支付方式,现在取不到这个值,也没法区分是什么支付方式了,现在只好给了个默认值是微信,为空的.

阅读全文

与linux驱动异步通知相关的资料

热点内容
词法分析编译原理论文 浏览:269
电脑文件夹还原方法 浏览:528
安卓包如何成为文档 浏览:946
继承类如何实例化python 浏览:767
逆战加密武器钥匙 浏览:261
php取小数后两位 浏览:354
单片机编程魔法师 浏览:834
帝豪gs怎么下载影视app软件 浏览:511
程序员去山中泡温泉 浏览:38
安卓手机怎么恢复出厂系统版本 浏览:361
高三倒计时缓解压力 浏览:621
一捏就变形的解压玩具怎么折 浏览:198
易融贷app借钱怎么 浏览:941
单片机侧重点 浏览:869
江苏惠普服务器虚拟化设计云主机 浏览:649
在欧拉app好猫充电桩怎么申请 浏览:451
反编译代码教程 浏览:800
linuxio阻塞 浏览:973
8脚单片机pic 浏览:821
如何看彩色涂鸦遮住的字安卓 浏览:688