导航:首页 > 操作系统 > android定义栈

android定义栈

发布时间:2023-05-12 07:33:47

⑴ 堆栈中(不是栈顶的)的activity能否接收到动态注册的广播

当用户在一个Activity中执行完任务,要向前切换到另一个Activity,并且不希望用户点击“返回”按钮再回到当前的Activity时,可以调用Activity类的finish()方法,把当前的Activity从该应用的回退堆栈中删除,finish()方法被调用,当前的Activity就会碰和被销毁,用户不能够再按“返信吵配回”按钮回到这个Activity中。示例代码如下:
一.清单文件(androidManifest.xml)
<?xmlversion="1.0"encoding="utf-8"?>
<manifestxmlns:android="htt p:/ /schemas.android.c om/apk/res/android"
package="my.android.test"
android:versionCode="1"
android:versionName="1.0">
<applicationandroid:icon="@drawable/icon"android:label="@string/app_name">
<activity android:name=".Forwarding"
android:label="@string/app_name">
<intent-filter>
<actionandroid:name="android.intent.action.MAIN"/>
<categoryandroid:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
<activity android:name=".ForwardTarget">
</activity>
</application>
<uses-sdk android:minSdkVersion="滑指9"/>
</manifest>
二.字符资源定义(strings.xml)
<?xmlversion="1.0"encoding="utf-8"?>
<resources>
<string name="hello">Hello World, Forwarding!</string>
<string name="app_name">Forwarding</string>
<string name="activity_forwarding">App/Activity/Forwarding</string>
<string name="forwarding">Press the button to go forward to the next activity. This activity will stop, so you will no longer see it when going back.</string>
<string name="go">Go</string>
<string name="forward_target">Press back button and notice we don\'t see the previous activity.</string>
</resources>
三.布局定义(forwarding.xml、forward_target.xml)
Forwarding.xml
<?xmlversion="1.0"encoding="utf-8"?>
<LinearLayoutxmlns:android="htt p:/ /schemas.android.c om/apk/res/android"android:orientation="vertical"android:padding="4dip"
android:gravity="center_horizontal"
android:layout_width="match_parent"android:layout_height="match_parent">
<TextView
android:layout_width="match_parent"android:layout_height="wrap_content"
android:layout_weight="0"
android:paddingBottom="4dip"
android:text="@string/forwarding"/>
<Buttonandroid:id="@+id/go"
android:layout_width="wrap_content"android:layout_height="wrap_content"
android:text="@string/go">
<requestFocus />
</Button>

</LinearLayout>
forward_target.xml
<?xmlversion="1.0"encoding="utf-8"?>
<LinearLayoutxmlns:android="htt p:/ /schemas.android.c om/apk/res/android"android:orientation="vertical"android:padding="4dip"
android:gravity="center_horizontal"
android:layout_width="match_parent"android:layout_height="match_parent">

<TextView
android:layout_width="match_parent"android:layout_height="wrap_content"
android:layout_weight="0"
android:text="@string/forward_target"/>

</LinearLayout>
四.Activity类定义(Forwarding.java、ForwardTarget.java)
Frowarding.java
package my.android.test;
import android.app.Activity;
import android.os.Bundle;
import android.content.Intent;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
public class Forwarding extends Activity {
/** Activity被首次创建时调用这个方法*/
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.forwarding);
//从布局中查找go按钮,并给它设置点击事件监听器
Button goButton = (Button)findViewById(R.id.go);
goButton.setOnClickListener(mGoListener);

}

/** 实现OnClickListener接口,监听按钮的点击事件*/
private OnClickListener mGoListener = new OnClickListener(){
public void onClick(View v){
//声明Intent对象,并启动ForwardTarget Activity
Intent intent = new Intent();
intent.setClass(Forwarding.this, ForwardTarget.class);
startActivity(intent);
//从历史堆栈中删除当前Activity,用户点击“返回”按钮键时,不会再返回到这个Activity。
finish();
}
};
}
ForwardTarget.java
package my.android.test;

import android.app.Activity;
import android.os.Bundle;

publicclass ForwardTargetextends Activity {

@Override
protectedvoid onCreate(Bundle saveInstanceState){
super.onCreate(saveInstanceState);

setContentView(R.layout.forward_target);
}
}

⑵ 在Android 中如何关闭应用以及所有的 Activity

Android程序有很多Activity,比如说主窗口A,调用了子唤判窗口B,陵灶如果在B中直接finish(), 接下里显示的是A。在B中如何关闭整个Android应用程序呢?本人总结了几种比较简单的实现方法。

1. Dalvik VM的本地方法
android.os.Process.killProcess(android.os.Process.myPid()) //获取PID
System.exit(0); //常规java、c#的标准退出法,返回值为0代表正常退出

2. 任务管理器方法
首先要说明该方法运行在Android 1.5 API Level为3以上才可以,同时需要权限
ActivityManager am = (ActivityManager)getSystemService (Context.ACTIVITY_SERVICE);
am.restartPackage(getPackageName());
系统会将,该包下的 ,所有进程,服务,全部杀掉,就可以杀干净了,要注意加上
<uses-permission android:name=\"android.permission.RESTART_PACKAGES\"></uses-permission>
3. 根据Activity的声明周期

3. 我们知尺链扮道Android的窗口类提供了历史栈,我们可以通过stack的原理来巧妙的实现,这里我们在A窗口打开B窗口时在Intent中直接加入标志 Intent.FLAG_ACTIVITY_CLEAR_TOP,这样开启B时将会清除该进程空间的所有Activity。
在A窗口中使用下面的代码调用B窗口
Intent intent = new Intent();
intent.setClass(Android123.this, CWJ.class);
intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP); //注意本行的FLAG设置
startActivity(intent);
接下来在B窗口中需要退出时直接使用finish方法即可全部退出。

4.自定义一个Actiivty 栈,道理同上,不过利用一个单例模式的Activity栈来管理所有Activity。

不过建议使用第一种方式来退出应用程序

⑶ 安卓手机的,系统版本和内核版本是指什么

系统版本:安卓的版本,称为软件

定义如果对象集S满足下列两个条件

1、S中至少包含两个不同元素

2、S中的元素按一定方式相互联系

则称S为一个系统,S的元素为系统的组分。

而版本就是一个序列号

内核版本:手机的硬件,称为硬件

如主板,GPS,摄像头,WiFi,蓝牙等,驱动集合体的版本号。

(3)android定义栈扩展阅读

系统内核

Android 是运行于Linux kernel之上,但并不是GNU/Linux。因为在一般GNU/Linux 里支持的功能,Android 大都没有支持,包括Cairo、X11、Alsa、FFmpeg、GTK、Pango及Glibc等都被移除掉了。

Android又以Bionic 取代Glibc、以Skia 取代Cairo、再以opencore取代FFmpeg等等。

Android 为了达到商业应用,必须移除被GNU GPL授权证所约束的,例如Android将驱动程序移Userspace,使得Linux driver 与 Linux kernel彻底分开。

Bionic/Libc/Kernel/ 并非标准的Kernel header files。

Android 的 Kernel header 是利用工具由 Linux Kernel header 所产生的,这样做是为了保留常数、数据结构与宏。

Android 的 Linux kernel控制包括安全(Security),存储器管理(Memory Management),程序管理(Process Management),网络堆栈(Network Stack),驱动程序模(DriverModel)等。

⑷ android怎样将activity放入全局栈

Activity是Android程序的表现层。程序的每一个显示屏幕就是一个Activity。正在运行的Activity处在栈的最顶端,它是运行状态的。

当有新的Activity进入屏幕最上端时,原来的Activity就会被压入第二层。如果他的屏幕没有被完 全遮盖,那么他处于Paused状态,如果他被遮盖那么处于Stop状态。
不管处于任何一层,都可能在系统觉得资源不足时被强行关闭,当然关闭时栈底的程序最先被关闭。
譬如:当你在程序中调用 Activity.finish()方法时,结果和用户按下 BACK 键一样:他告诉 Activity Manager该Activity实例可以被“回收”。随后 Activity Manager 激活处于栈第二层的 Activity 并重 新入栈,把原 Activity 压入到栈的第二层,从 Running 状态转到 Paused 状态。

在BlackBerry中,提供了一个管理Screen的栈,用来从任何地方来关闭位于最上一层的Screen,使用UiApplication.getUiApplication().getActiveScreen()来得到位于最上一层的Screen的实例,并且使用UiApplication.getUiApplication().popScreen()来关闭一个Screen或关闭当前最上一层的Screen,但是Android却未提供相应的功能,只能在一个Activity的对象里面调用finish来关闭自己,不能关闭其他的Activity。比如我们想实现一个功能从屏幕A—>屏幕B—>屏幕C—>屏幕D,然后在在转到屏幕D之前将屏幕B和C关闭,在屏幕B和屏幕C界面点击会退按钮都可以回退到上一个屏幕,但是在屏幕D上点击会退按钮让其回退到A,此外在一些循环跳转的界面上如果不在合适的地方将一些不需要的屏幕关闭,那么经过多次跳转后回导致内存溢出。对此我们可以设计一个全局的Activity栈,使用这个栈来管理Activity。管理Activity的类的定义如下:

import java.util.Stack;

import android.app.Activity;

public class ScreenManager {
private static Stack activityStack;
private static ScreenManager instance;
private ScreenManager(){
}
public static ScreenManager getScreenManager(){
if(instance==null){

⑸ 如何在程序异常退出前输出当前进程的堆栈信息 Backtraces

打印堆栈是调试的常用方法,一般在系统异常时,我们可以将异常情况下的堆栈打印出来,这样十分方便错误查找。实际上还有另外一个非常有用的功能:分析代码的行为。android代码太过庞大复杂了,完全的静态分析经常是无从下手,因此通过打印堆栈的动态分析也十分必要。

Android打印堆栈的方法,简单归类一下
1. zygote的堆栈mp
实际上这个可以同时mp java线程及native线程的堆栈,对于java线程,java堆栈和native堆栈都可以得到。
使用方法很简单,直接在adb shell或串口中输入:
[plain] view plain
kill -3 <pid>
输出的trace会保存在 /data/anr/traces.txt文件中。这个需要注意,如果没有 /data/anr/这个目录或/data/anr/traces.txt这个文件,需要手工创建一下,并设置好读写权限。
如果需要在代码中,更容易控制堆栈的输出时机,可以用以下命令获取zygote的core mp:
[java] view plain
Process.sendSignal(pid, Process.SIGNAL_QUIT);
原理和命令行是一样的。
不过需要注意两点:
adb shell可能会没有权限,需要root。
android 4.2中关闭了native thread的堆栈打印,详见 dalvik/vm/Thread.cpp的mpNativeThread方法:
[cpp] view plain
dvmPrintDebugMessage(target,
"\"%s\" sysTid=%d nice=%d sched=%d/%d cgrp=%s\n",
name, tid, getpriority(PRIO_PROCESS, tid),
schedStats.policy, schedStats.priority, schedStats.group);
mpSchedStat(target, tid);
// Temporarily disabled collecting native stacks from non-Dalvik
// threads because sometimes they misbehave.
//dvmDumpNativeStack(target, tid);
Native堆栈的打印被关掉了!不过对于大多数情况,可以直接将这个注释打开。

2. debuggerd的堆栈mp
debuggerd是android的一个daemon进程,负责在进程异常出错时,将进程的运行时信息mp出来供分析。debuggerd生 成的coremp数据是以文本形式呈现,被保存在 /data/tombstone/ 目录下(名字取的也很形象,tombstone是墓碑的意思),共可保存10个文件,当超过10个时,会覆盖重写最早生成的文件。从4.2版本开 始,debuggerd同时也是一个实用工具:可以在不中断进程执行的情况下打印当前进程的native堆栈。使用方法是:
[plain] view plain
debuggerd -b <pid>
这可以协助我们分析进程执行行为,但最最有用的地方是:它可以非常简单的定位到native进程中锁死或错误逻辑引起的死循环的代码位置。

3. java代码中打印堆栈
Java代码打印堆栈比较简单, 堆栈信息获取和输出,都可以通过Throwable类的方法实现。目前通用的做法是在java进程出现需要注意的异常时,打印堆栈,然后再决定退出或挽救。通常的方法是使用exception的printStackTrace()方法:
[java] view plain
try {
...
} catch (RemoteException e) {
e.printStackTrace();
...
}
当然也可以只打印堆栈不退出,这样就比较方便分析代码的动态运行情况。Java代码中插入堆栈打印的方法如下:
[java] view plain
Log.d(TAG,Log.getStackTraceString(new Throwable()));

4. C++代码中打印堆栈
C++也是支持异常处理的,异常处理库中,已经包含了获取backtrace的接口,Android也是利用这个接口来打印堆栈信息的。在Android的C++中,已经集成了一个工具类CallStack,在libutils.so中。使用方法:
[cpp] view plain
#include <utils/CallStack.h>
...
CallStack stack;
stack.update();
stack.mp();
使用方式比较简单。目前Andoid4.2版本已经将相关信息解析的很到位,符号表查找,demangle,偏移位置校正都做好了。
[plain] view plain

5. C代码中打印堆栈
C代码,尤其是底层C库,想要看到调用的堆栈信息,还是比较麻烦的。 CallStack肯定是不能用,一是因为其实C++写的,需要重新封装才能在C中使用,二是底层库反调上层库的函数,会造成链接器循环依赖而无法链接。 不过也不是没有办法,可以通过android工具类CallStack实现中使用的unwind调用及符号解析函数来处理。
这里需要注意的是,为解决链接问题,最好使用dlopen方式,查找需要用到的接口再直接调用,这样会比较简单。如下为相关的实现代码,只需要在要 打印的文件中插入此部分代码,然后调用getCallStack()即可,无需包含太多的头文件和修改Android.mk文件:
[cpp] view plain
#define MAX_DEPTH 31
#define MAX_BACKTRACE_LINE_LENGTH 800
#define PATH "/system/lib/libcorkscrew.so"

typedef ssize_t (*unwindFn)(backtrace_frame_t*, size_t, size_t);
typedef void (*unwindSymbFn)(const backtrace_frame_t*, size_t, backtrace_symbol_t*);
typedef void (*unwindSymbFreeFn)(backtrace_symbol_t*, size_t);

static void *gHandle = NULL;

static int getCallStack(void){
ssize_t i = 0;
ssize_t result = 0;
ssize_t count;
backtrace_frame_t mStack[MAX_DEPTH];
backtrace_symbol_t symbols[MAX_DEPTH];

unwindFn unwind_backtrace = NULL;
unwindSymbFn get_backtrace_symbols = NULL;
unwindSymbFreeFn free_backtrace_symbols = NULL;

// open the so.
if(gHandle == NULL) gHandle = dlopen(PATH, RTLD_NOW);

// get the interface for unwind and symbol analyse
if(gHandle != NULL) unwind_backtrace = (unwindFn)dlsym(gHandle, "unwind_backtrace");
if(gHandle != NULL) get_backtrace_symbols = (unwindSymbFn)dlsym(gHandle, "get_backtrace_symbols");
if(gHandle != NULL) free_backtrace_symbols = (unwindSymbFreeFn)dlsym(gHandle, "free_backtrace_symbols");

if(!gHandle ||!unwind_backtrace ||!get_backtrace_symbols || !free_backtrace_symbols ){
ALOGE("Error! cannot get unwind info: handle:%p %p %p %p",
gHandle, unwind_backtrace, get_backtrace_symbols, free_backtrace_symbols );
return result;
}

count= unwind_backtrace(mStack, 1, MAX_DEPTH);
get_backtrace_symbols(mStack, count, symbols);

for (i = 0; i < count; i++) {
char line[MAX_BACKTRACE_LINE_LENGTH];

const char* mapName = symbols[i].map_name ? symbols[i].map_name : "<unknown>";
const char* symbolName =symbols[i].demangled_name ? symbols[i].demangled_name : symbols[i].symbol_name;
size_t fieldWidth = (MAX_BACKTRACE_LINE_LENGTH - 80) / 2;

if (symbolName) {
uint32_t pc_offset = symbols[i].relative_pc - symbols[i].relative_symbol_addr;
if (pc_offset) {
snprintf(line, MAX_BACKTRACE_LINE_LENGTH, "#%02d pc %08x %.*s (%.*s+%u)",
i, symbols[i].relative_pc, fieldWidth, mapName,
fieldWidth, symbolName, pc_offset);
} else {
snprintf(line, MAX_BACKTRACE_LINE_LENGTH, "#%02d pc %08x %.*s (%.*s)",
i, symbols[i].relative_pc, fieldWidth, mapName,
fieldWidth, symbolName);
}
} else {
snprintf(line, MAX_BACKTRACE_LINE_LENGTH, "#%02d pc %08x %.*s",
i, symbols[i].relative_pc, fieldWidth, mapName);
}

ALOGD("%s", line);
}

free_backtrace_symbols(symbols, count);

return result;
}
对sched_policy.c的堆栈调用分析如下,注意具体是否要打印,在哪里打印,还可以通过pid、uid、property等来控制一下,这样就不会被淹死在trace的汪洋大海中。
[plain] view plain
D/SchedPolicy( 1350): #00 pc 0000676c /system/lib/libcutils.so
D/SchedPolicy( 1350): #01 pc 00006b3a /system/lib/libcutils.so (set_sched_policy+49)
D/SchedPolicy( 1350): #02 pc 00010e82 /system/lib/libutils.so (androidSetThreadPriority+61)
D/SchedPolicy( 1350): #03 pc 00068104 /system/lib/libandroid_runtime.so (android_os_Process_setThreadPriority(_JNIEnv*, _jobject*, int, int)+7)
D/SchedPolicy( 1350): #04 pc 0001e510 /system/lib/libdvm.so (dvmPlatformInvoke+112)
D/SchedPolicy( 1350): #05 pc 0004d6aa /system/lib/libdvm.so (dvmCallJNIMethod(unsigned int const*, JValue*, Method const*, Thread*)+417)
D/SchedPolicy( 1350): #06 pc 00027920 /system/lib/libdvm.so
D/SchedPolicy( 1350): #07 pc 0002b7fc /system/lib/libdvm.so (dvmInterpret(Thread*, Method const*, JValue*)+184)
D/SchedPolicy( 1350): #08 pc 00060c30 /system/lib/libdvm.so (dvmCallMethodV(Thread*, Method const*, Object*, bool, JValue*, std::__va_list)+271)
D/SchedPolicy( 1350): #09 pc 0004cd34 /system/lib/libdvm.so
D/SchedPolicy( 1350): #10 pc 00049382 /system/lib/libandroid_runtime.so
D/SchedPolicy( 1350): #11 pc 00065e52 /system/lib/libandroid_runtime.so
D/SchedPolicy( 1350): #12 pc 0001435e /system/lib/libbinder.so (android::BBinder::transact(unsigned int, android::Parcel const&, android::Parcel*, unsigned int)+57)
D/SchedPolicy( 1350): #13 pc 00016f5a /system/lib/libbinder.so (android::IPCThreadState::executeCommand(int)+513)
D/SchedPolicy( 1350): #14 pc 00017380 /system/lib/libbinder.so (android::IPCThreadState::joinThreadPool(bool)+183)
D/SchedPolicy( 1350): #15 pc 0001b160 /system/lib/libbinder.so
D/SchedPolicy( 1350): #16 pc 00011264 /system/lib/libutils.so (android::Thread::_threadLoop(void*)+111)
D/SchedPolicy( 1350): #17 pc 000469bc /system/lib/libandroid_runtime.so (android::AndroidRuntime::javaThreadShell(void*)+63)
D/SchedPolicy( 1350): #18 pc 00010dca /system/lib/libutils.so
D/SchedPolicy( 1350): #19 pc 0000e3d8 /system/lib/libc.so (__thread_entry+72)
D/SchedPolicy( 1350): #20 pc 0000dac4 /system/lib/libc.so (pthread_create+160)
D/SchedPolicy( 1350): #00 pc 0000676c /system/lib/libcutils.so
D/SchedPolicy( 1350): #01 pc 00006b3a /system/lib/libcutils.so (set_sched_policy+49)
D/SchedPolicy( 1350): #02 pc 00016f26 /system/lib/libbinder.so (android::IPCThreadState::executeCommand(int)+461)
D/SchedPolicy( 1350): #03 pc 00017380 /system/lib/libbinder.so (android::IPCThreadState::joinThreadPool(bool)+183)
D/SchedPolicy( 1350): #04 pc 0001b160 /system/lib/libbinder.so
D/SchedPolicy( 1350): #05 pc 00011264 /system/lib/libutils.so (android::Thread::_threadLoop(void*)+111)
D/SchedPolicy( 1350): #06 pc 000469bc /system/lib/libandroid_runtime.so (android::AndroidRuntime::javaThreadShell(void*)+63)
D/SchedPolicy( 1350): #07 pc 00010dca /system/lib/libutils.so
D/SchedPolicy( 1350): #08 pc 0000e3d8 /system/lib/libc.so (__thread_entry+72)
D/SchedPolicy( 1350): #09 pc 0000dac4 /system/lib/libc.so (pthread_create+160)

6. 其它堆栈信息查询

⑹ activity(Android组件中最重要的四大组件之一)详细资料大全

activity是Android组件中最基本也是最为常见用的四大组件之一。Android四大组件有Activity,Service服务,Content Provider内容提供,BroadcastReceiver广播接收器。

基本介绍

概要说明,详细说明,基本状态,状态转换,方法通知,

概要说明

Activity是Android组件中最基本也是最为常见用的四大组件(Activity,Service服务,Content Provider内容提供者,备颂孙BroadcastReceiver广播接收器)之一。 Activity是一个应用程式组件,提供一个萤幕,用户可以用来互动为了完成某项任务。 Activity中所有操作都与用户密切相关,是一个负责与 用户互动 的组件,可以通过setContentView(View)来 显示指定控制项 。 在一个android套用中,一个Activity通常就是一个单独的萤幕,它上面可以显示一些控制项也可以监听并处理用户的事件做出回响。Activity之间通过Intent进行通信。

详细说明

基本状态

在android 中,Activity 拥有四种基本状态:
  1. Active/Running
一个新 Activity 启动入栈后,它显示在萤幕最前端,处理是处于栈的最顶端(Activity栈顶),此时它处于可见并可和用户互动的激活状态,叫做活动状态或者运行状态(active or running)。 2 . Paused 当 Activity失去焦点, 被一个新的非全萤幕的Activity 或者一个透明的Activity 被放置在栈顶,此时的状态叫做暂停状态(Paused)。此时它依然与视窗管理器保持连线,Activity依然保持活力(保持所有的状态,成员信息,和视窗管理器保持连线)樱空,但是在系统记忆体极端低下的时候将被强行终止掉。所以它仍然仿链可见,但已经失去了焦点故不可与用户进行互动。 3 . Sped 如果一个Activity被另外的Activity完全覆盖掉,叫做停止状态(Sped)。它依然保持所有状态和成员信息,但是它不再可见,所以它的视窗被隐藏,当系统记忆体需要被用在其他地方的时候,Sped的Activity将被强行终止掉。 4 . Killed 如果一个Activity是Paused或者Sped状态,系统可以将该Activity从记忆体中删除,Android系统采用两种方式进行删除,要么要求该Activity结束,要么直接终止它的进程。当该Activity再次显示给用户时,它必须重新开始和重置前面的状态。

状态转换

当一个 Activity 实例被创建、销毁或者启动另外一个 Activity 时,它在这四种状态之间进行转换,这种转换的发生依赖于用户程式的动作。下图说明了 Activity 在不同状态间转换的时机和条件: 图1. Activity 的状 态转换 如上所示,Android 程式设计师可以决定一个 Activity 的“生”,但不能决定它的“死”,也就是说程式设计师可以启动一个 Activity,但是却不能手动的“结束”一个 Activity。当你调用 Activity.finish() 方法时,结果和用户按下 BACK 键一样:告诉 Activity Manager 该 Activity 实例完成了相应的工作,可以被“回收”。随后 Activity Manager 激活处于栈第二层的 Activity 并重新入栈,同时原 Activity 被压入到栈的第二层,从 Active 状态转到 Paused 状态。例如:从 Activity1 中启动了 Activity2,则当前处于栈顶端的是 Activity2,第二层是 Activity1,当我们调用 Activity2.finish() 方法时,Activity Manager 重新激活 Activity1 并入栈,Activity2 从 Active 状态转换 Sed 状态, Activity1. onActivityResult(int requestCode, int resultCode, Intent data) 方法被执行,Activity2 返回的数据通过 data 参数返回给 Activity1。 Activity栈 Android 是通过一种 Activity 栈的方式来管理 Activity 的,一个 Activity 的实例的状态决定它在栈中的位置。处于前台的 Activity 总是在栈的顶端,当前台的 Activity 因为异常或其它原因被销毁时,处于栈第二层的 Activity 将被激活,上浮到栈顶。当新的 Activity 启动入栈时,原 Activity 会被压入到栈的第二层。一个 Activity 在栈中的位置变化反映了它在不同状态间的转换。Activity 的状态与它在栈中的位置关系如下图所示: 图2. Activity 的状 与它在 中的位置 如上所示,除了最顶层即处在 Active 状态的 Activity 外,其它的 Activity 都有可能在系统记忆体不足时被回收,一个 Activity 的实例越是处在栈的底层,它被系统回收的可能性越大。系统负责管理栈中 Activity 的实例,它根据 Activity 所处的状态来改变其在栈中的位置。

方法通知

下面的图显示了Activity的重要状态转换,矩形框表明Activity在状态转换之间的回调接口,开发人员可以重载实现以便执行相关代码,带有颜色的椭圆形表明Activity所处的状态。 3 . Activity 的状 转换的方法和实现 在上图中,Activity有三个关键的循环: 1. 整个的生命周期,从onCreate(Bundle)开始到onDestroy()结束。Activity在onCreate()设定所有的“全局”状态,在onDestory()释放所有的资源。例如:某个Activity有一个在后台运行的执行绪,用于从网路下载数据,则该Activity可以在onCreate()中创建执行绪,在onDestory()中停止执行绪。 2. 可见的生命周期,从onStart()开始到onS()结束。在这段时间,可以看到Activity在萤幕上,尽管有可能不在前台,不能和用户互动。在这两个接口之间,需要保持显示给用户的UI数据和资源等,例如:可以在onStart中注册一个IntentReceiver来监听数据变化导致UI的变动,当不再需要显示时候,可以在onS()中注销它。onStart(),onS()都可以被多次调用,因为Activity随时可以在可见和隐藏之间转换。 3. 前台的生命周期,从onResume()开始到onPause()结束。在这段时间里,该Activity处于所有 Activity的最前面,和用户进行互动。Activity可以经常性地在resumed和paused状态之间切换,例如:当设备准备休眠时,当一个 Activity处理结果被分发时,当一个新的Intent被分发时。所以在这些接口方法中的代码应该属于非常轻量级的。

⑺ Android知识点解析(1)

Activity生命周期

什么是activity:提供给用户交互的接口,实现点击、滑动等操作的界面。

4种状态:runningpausestoppedkilled

Activity启动->onCreate()->onStart()->onResume() onResume()和onStart()均为前台可见

点击Home按键纯磨返回到主界面(Activity不可见)->onPause()->onStop()

当再次回到原Activity时->onRestart()->onStart()->onResume()

退出当前Activity时->onPause()->onStop()->onDestroy() Destroy:销毁和资源回收

进程优先级(优先级:高----->低):前台/可见/服务/后台/空

任务栈(Task)

栈结构:后进先出 一个Task包含Activity的集合,通过Task管理每一个Activity,可以结合Activity的启动模式去理解。实例:退出APP时,需要将Task种的Activity完全地移除,才能安全并且完全地退出应用。一个APP当中可能不止一个Task,但一个Activity可以独享一个Task

启动模式

1.Standard/标准模式:每启动一个Activity,则不中尘会考虑当前Task中是否已经存在Activity的实例做培斗,直接创建并放置栈顶,缺点是比较消耗资源。

2.SingleTop栈顶复用模式:如果栈顶存在当前Activity的实例,则不去创建,直接复用栈顶的Activity。若不是,则创建。

3.SingleTask栈内复用模式:单例,检测整个任务栈是否存在Activity的实例,如果存在则移除销毁实例以上的Activity,并回调onNewIntent()方法。

4.SingleInstance:ActivityA独享一个Task,且App中有且只有一个ActivityA的实例。

Schema跳转协议

页面内跳转协议,通过定义自己的Schema协议,可以方便地跳转到app的各个页面。应用场景:服务端可以定制化告诉App跳转到相应页面;可以通过通知栏消息定制化跳转页面;通过H5页面跳转等

⑻ Android基础之Activity 运行模式与回退栈

LaunchMode 定义的是activity实例与task之间的关系,可以通过下面的两种方式来定义:

在Activity A中启动B,可以利用Activity B在清单中的launchmode定义,也可以在A中调用startActivity()的时候通过intent的flag传入,当两种方式都有定义,intent的flag参数会覆盖掉B原有的定义。

利用Activity 元素的launchMode属性
launchMode属性指定Activity如何被运行到一个task中。launchMode的值有四种:

默认, 每次启动Activity系统都会产生一个新的实例,并且把intent发送给新产生的实例,这个Activity可以被实例化多次,每个实例可以属于不同的task,每个task也可以保有多个此Activity的实例。

如果当前task 的回退栈栈裂亩顶已经存在一个此Activity的实例,系统通过调用这个实例的onNewIntent()方法把intent发送给这个Activity实例,而不是创建一个新的此Activity的实例。这个Activity也可以被实例化多次,每个实例可以属于不同的task,每个task可一个保有多个实例(仅限于此Activity已存在的实例不在栈顶)
注意:
应用场合如下:不想出现2个同样的activity在顶部。比如用户正在一个activity阅读信息,这时来了notification,用户点击后应该更新这些信息,而不是新建一个activity,这样在点击back时,就不会出现回到旧信息activity的情况了。这种情况正是下面这段英语提到的。
Note: When a new instance of an activity is created, the user can press the Back button to return to the previous activity. But when an existing instance of an activity handles a new intent, the user cannot press the Back button to return to the state of the activity before the new intent arrived in onNewIntent()
.
例如,当前回退栈中有A,B,C,D四个Activity,全部是Standard,在D中调用startActivity()去启动B,intent的flag设置成FLAG_ACTIVITY_CLEAR_TOP 和FLAG_ACTIVITY_NEW_TASK,系统发现栈中有B,会先销毁这个B,再原位置重建B,清空CD,而不是把这个新建的B的实例压入栈顶,这里之所以会销毁B再新建B,因为B的launchmode是Standard,无论什么情况下启动,都需要new一个B的实例,但如果此时B是SingleTop的,系统会把这个intent通过onNewIntent传给已经在栈中的B的实例,不需要销毁再创此昌建,仍需要清空CD。

系统会创建一个新的task并且把这个实例放在栈底( 此处有疑问,测试发现并不一定是栈底 ),但是,如果在一个单独的task中已经存在一个此Activity的实例,系统会把intent通过onNewIntent()发送给这个实例( 测试发现如果在回退栈中,该Activity的上面还有其他Activity,启动森源扒此Activity会清空栈中此Activity上面的其他Activity ),而不是创建一个新的实例。同一时间在只有一个此Activity的实例存在于系统中。

与SingleTask一样,不同的是SingleTask的Activity所在的task中可以有其他的Activity,而SingleInstance的Activity独占一个task,并且在整个系统中只有唯一的一个实例。由这个Activity启动的其他Activity都会在新的task中打开。

另一个例子,系统自带浏览器APP把浏览器Activity声明为SingleTask,通过在Activity标签里的launchMode进行指定,这意味着如果你发送一个intent启动浏览器,不管是为浏览器新开启一个task还是从浏览器已经在后台保有的task中启动浏览器,浏览器Activity与你的APP不在同一个task。

不管一个Activity是不是在一个新的task中启动,点击返回都会返回前一个Activity。不过,如果启动一个LaunchMode为singleTask的Activity,如果该Activity此时在一个处于后台的task中,整个task会变成前台task,此时,回退栈会包含由这个后台task携带过来所有Activity,放在回退栈的栈顶,下图说明这种情况。

在一个新的task里启动Activity. 如果已经有Activity实例运行在某一task中,启动这个Activity会把该实例所在的task带到前台,由该实例的onNewIntent()来接收新的intent。

如果被启动的Activity就是当前的Activity,这个已经存在的实例通过onNewIntent()接收intent,不会产生新的实例。

被启动的Activity如果已经存运行于当前task,回退栈中所有在此Activity上面的Activity都将被销毁,此Activity通过onNewIntent()接收新的intent。
例如,一个task中有A,B,C,D,四个Activity,如果D 调用startActivtiy()启动Activity B,C和D会被销毁,B接收这个intent,回退栈中有A,B。
上例中的Activity B的实例,或者通过onNewIntent()接收新的intent,或者销毁新建来处理新的intent。如果B的launchmode是standard,并且没有设置FLAG_ACTIVITY_SINGLE_TOP,那么B会被销毁重启,如果是其他launchmode或者设置了FLAG_ACTIVITY_SINGLE_TOP,则会通过onNewIntent()接收。
FLAG_ACTIVITY_CLEAR_TOP 和FLAG_ACTIVITY_NEW_TASK结合使用会有个不错的效果。
如果启动的Activity位于task的底部,它会把所在task带到前台,并且清理状态至root状态,当从通知栏里打开一个Activity的会非常有用。

Affinity指的是一个Activity偏向于从属于哪个task,默认情况下,一个APP内的所有Activity互相之间共享一个affinity的值,所以,所有同一APP下的所有Activity都偏向于从属于同一个task。但是,这个值是可以更改的,不同APP内的Activity可以共享一个affinity,同一个APP内的Activity也可以被分配不同的affinity的值。
affinity的值可以通过修改Activity标签的taskAffinity属性来修改。
这个属性接收一个String的值,必须在manifest标签范围内是唯一的值,因为系统是通过名称来标识APP的affinity的值的。
Affinity作用于以下两种情况:

通过startActivity()启动一个新的Activity时,默认情况下,新的Activity会被压入与启动者相同的回退栈中。但是,如果在启动Activity的时候,使用了FLAG_ACTIVITY_NEW_TASK 这个标志,系统会为新的Activity寻找一个新的task。通常情况下,是一个新的task。但是也并不是必须的。如果系统中有一个task的affinity值与新的Activity的值相同,新的Activity会被分配到这个task中。如果没有这样的task,就启动一个新的task。如果这个标志产生了一个新的task,当用户点击home键离开的时候,必须要有某种方式能够使用户返回到这个task来。有些实体(例如通知管理器)总是从一个外部task中启动Activity,所以在通过startActivity()启动新的Activity时总是需要传递FLAG_ACTIVITY_NEW_TASK 这个标志。如果你有一个Activity可以被外部实体可能这个标志启动,注意用户可以有一种独立的方式回到启动它的task,例如点击启动图标。

这种情况下,一个Activity可以动启动它的那个task移动到它的affinity值对应的task中,当那个task回到前台。例如,假设,一个报告指定城市天气情况的Activity作为一个旅行APP的一部分,它跟其他处在同一APP的Activity一样有一个相同的affinity值,并且允许通过这个属性来调整目标task。当你的一个Activity启动了这个天气预报Activity,它默认跟你的Activity在一个task里,但是,当旅行APP进入到前台,这个天气预报Activity又会被重新分配给旅行APP并且在旅行APP内展示。
提示:
如果一个APK文件从用户的角度看是多款APP,可能需要这个属性来设置不同的affinity来关联不同的APP。

如果用户离开一个task太长时间,系统会清除task中的所有Activity仅仅保留这下根Activity。当用户返回到这个task的时候,只有这个根Activity会被恢复。系统通过这种方式来处理,是因为经过相当长的一段时间之后,用户已经抛弃他们曾经正在做的事情,计划再回来的时候做点新的事情。

你可以通过如下属性来更改这种行为:

参考文献:
Tasks and Back Stack
<activity>
Android 阅读Tasks and Back Stack文章后的重点摘抄

⑼ Android中,Context,什么是Context

Context对象是如此常见和传递使用,它可能会很容易产生并不是你预期的情形。加载资源、启动一个新的Activity、获取系统服务、获取内部文件路径以及创建view(其实还远不止这些)统统都需要Context对象来完成。我(原文作者)想做的只是给大家提供一些Context是如何工作的见解,以及让大家在应用中更有效的使用Context的技巧。

Context的类型
并不是所有的context实例都是等价的。根据Android应用的组件不同,你访枣兄掘问的context推向有些细微的差别。

Application - 是一个运行在你的应用进程中的单例。在Activity或者Service中,它可以通过getApplication()函数获得,或者人和继承于context的对象中,通过getApplicationContext()方法获得。不管你是通过何种方法在哪里获得的,在一个进程内,你总是获得到同一个实例。

Activity/Service - 继承于ContextWrapper,它实现了与context同样API,但是代理这些方法调用到内部隐藏的Context实例,即我们所知道的基础context。任何时候当系统创建一个新的Activity或者Service实例的时候,它也创建一个新的ContextImpl实例来做所有的繁重的工作。每一个Activity和Service以及其对应的基础context,对每个实例来说都是唯一的。

BroadcastReciver - 它本身不是context,也没有context在它里面,但是每当一个新的广播到达的时候,框架都传递一个context对象到onReceive()。这个context是一个ReceiverRestrictedContext实例,它有两个主要函数被禁掉:registerReceiver()和bindService()。这两个凳核函数在BroadcastReceiver.onReceive()不允许调用。每次Receiver处理一个广播,传递进来的context都是一个新的实例。

ContentProvider - 它本身也不是一个Context,但是它可以通过getContext()函数给你一个Context对象。如果ContentProvider是在调用者的的本地(例如,在同一个应用进程),getContext()将返回的是Application单例。然而,如果调用这和ContentProvider在不同的进程的时候,它将返回一个新创建的实例代表这个Provider所运行的包。

保存引用
第一个我们需要解决问题是,在一个对象或者类内部保存一个context引用,而它生命周期却超过其保存引用的对象的尘迟生命周期。例如,创建一个自定义的单例,它需要一个context来加载资源或者获取ContentProvider,从而保存一个指向当前Activiy或者Service的引用在单例中。

糟糕的单例

[java] view plain
public class CustomManager {
private static CustomManager sInstance;

public static CustomManager getInstance(Context context) {
if (sInstance == null) {
sInstance = new CustomManager(context);
}

return sInstance;
}

private Context mContext;

private CustomManager(Context context) {
mContext = context;
}
}

这里的问题在于,我们不知道这个context是从哪里来的,并且如果保存一个最终指向的是Activity或者Servece的引用是并不安全的。这是一个问题,是因为一个单例在类的内部维持一个唯一的静态引用,这意味着我们的对象,以及所有其他它所引用的对象,将永远不能被垃圾回收。假如这个Context是一个Activity,我们将保存与这个Activity相关的所有的view以及其他大的对象,从而造成内存泄漏。
为了解决这个问题,我们修改单例永远只是保存Application context:

改善的单例:

[java] view plain
public class CustomManager {
private static CustomManager sInstance;

public static CustomManager getInstance(Context context) {
if (sInstance == null) {
//Always pass in the Application Context
sInstance = new CustomManager(context.getApplicationContext());
}

return sInstance;
}

private Context mContext;

private CustomManager(Context context) {
mContext = context;
}
}

现在这个例子中,我们的Context来自哪里都没有关系,因为我们这里保存引用是安全的。Application Context 本身就是一个单例,所以我们再创建另外一个static引用,不会造成任何内存泄漏。另外一个很好的例子是,在后台线程或者一个等待的Handler中保存Context的引用,也可以使用这样的方法。

为什么我们不能总是引用Application context呢?正如前面说的,引用Application context永远不用担心内存泄漏的问题。问题的答案,就像我在开始的介绍中说的,是因为不同context并不是等价的。

Context的能力
Conext能做的通用操作决定于这个context最初来源于哪里。下表所列的是,在应用中常见的会收到context对象的,以及对应的每种情况,它可以用于哪些地方:

Application
Activity
Service
ContentProvider
BroadcastReceiver

Show a Dialog NO YES NO NO NO
Start an Activity NO1 YES NO1 NO1 NO1
Layout Inflation NO2 YES NO2 NO2 NO2
Start a Service YES YES YES YES YES
Bind to a Service YES YES YES YES NO
Send a Broadcast YES YES YES YES YES
Register BroadcastReceiver YES YES YES YES NO3
Load Resource Values YES YES YES YES YES

注:NO1 表示Application context的确可以开始一个Activity,但是它需要创建一个新的task。这可能会满足一些特定的需求,但是在你的应用中会创建一个不标准的回退栈(back stack),这通常是不推荐的或者不是是好的实践。
NO2 表示这是非法的,但是这个填充(inflation)的确可以完成,但是是使用所运行的系统默认的主题(theme),而不是你app定义的主题。
NO3 在Android4.2以上,如果Receiver是null的话(这是用来获取一个sticky broadcast的当前 值的),这是允许的。

用户界面UI
从前面的表格中可以看到,application context有很多功能并不是合适去做,而这些功能都与UI相关。实际上,只有Activity能够处理所有与UI相关的任务。其他类别的context实例功能都差不多。

幸运的是,在应用中这三种操作基本上都不需要在Activity范围之外进行,这很可能是android框架故意这么设计的。尝试显示一个使用Aplication context创建的Dialog,或者使用Application context开始一个Activity,系统会抛出一个异常,让你的application崩溃,非常强的告诉你某些地方出了问题。

一个并不明显的问题是填充布局(inflating layout)。如果你已经读过了我(原文作者)的上一篇文章Layout inflation,你就已经知道它可能是一个非常神秘过程,伴随一些隐藏的行为。使用正确的context关系到其中的一个行为。当你使用Application context来inflate一个布局的时候,框架并不会报错,并返回一个使用系统默认的主题创建一个完美的view给你,而没有考虑你的applicaiton自定义的theme和style。这是因为Acitivity是唯一的绑定了在manifast文件种定义主题的Context。其他的Context实例将会使用系统默认的主题来inflater你的view。导致显示的结果并不是你所希望的。

规则的路口
可能有些读者已经得出两个规则互相矛盾的结论。可能有些情况下,在某些Application的设计中,我们可能既必须长期保存一个的引用,并且为了完成与UI相关的工作又必须保存一个Activity。如果出现这种情况,我将会强烈建议你重新考虑你的设计,它将是一个很好的“反框架”教材。

经验法则
绝大多数情况下,使用在你的所工作的组建内部能够直接获取的Context。只要这个引用没有超过这个组建的生命周期,你可以安全的保存这个引用。一旦你要保存一个context的引用,它超过了你的Activity或者Service的生命周期范围,甚至是暂时的,你就需要转换你的引用为Application context。

⑽ Android 多返回栈技术详解

用户通过系统返回按钮导航回去的一组页面,在开发中被称为返回栈 (back stack)。多返回栈即一堆 "返回栈",对多返回栈的支持是在 Navigation 2.4.0-alpha01 和 Fragment 1.4.0-alpha01 中开始的。本文将为您展开多返回栈的技术详解。

无论您在使用 Android 全新的 手势导航 还是传统的导航栏,用户的 "返回" 操作是 Android 用户体验中关键的一环,把握好返回功能的设计可以使应用更加贴近整个生态系统。

在最简单的应用场景中,系统返回按钮仅仅 finish 您的 Activity。在过去您可能需要覆写 Activity 的 onBackPressed() 方法来自定义返回操作,而在 2021 年您无需再这样操作。我们已经在 OnBackPressedDispatcher 中提供了 针对自定义返回导航的 API。实际上这与 FragmentManager 和 NavController 中 已经 添加的 API 相同。

这意味着当您使用 Fragments 或 Navigation 时,它们会通过 OnBackPressedDispatcher 来确保您调用了它们返回栈的 API,系统的返回按钮会将您推入返回栈的页面逐层返回。

多返回栈不会改变这个基本逻辑。系统的返回按钮仍然是一个单向指令 —— "返回"。这对多返回栈 API 的实现机制有深远影响。

在 surface 层级,对于 多返回栈的支持 貌似很直接,但其实需要额外解释一下 "Fragment 返回栈" 到底是什么。FragmentManager 的返回栈其实包含的不是 Fragment,而是由 Fragment 事务组成的。更准确地说,是由那些调用了 addToBackStack(String name) API 的事务组成的。

这就意味着当您调用 commit() 提交了一个调用过 addToBackStack() 方法的 Fragment 事务时, FragmentManager 会执行所有您在事务中所指定的操作 (比如 替换操作 ),从而将每个 Fragment 转换为预期的状态。然后 FragmentManager 会将该事务作为它返回栈的一部分。

当您调用 popBackStack() 方法时 (无论是直接调用,还是通过系统返回键以 FragmentManager 内部机制调用),Fragment 返回栈的最上层事务会从栈中弹出 -- 比如新添加的 Fragment 会被移除,隐藏的 Fragment 会显示。这会使得 FragmentManager 恢复到最初提交 Fragment 事务之前的状态。

也就是说 popBackStack() 变成了销毁操作: 任何已添加的 Fragment 在事务被弹出的时候都会丢失它的状态。换言之,您会失去视图的状态,任何所保存的实例状态 (Saved Instance State),并且任何绑定到该 Fragment 的 ViewModel 实例都会被清除。这也是该 API 和新的 saveBackStack() 方法之间的主要区别。 saveBackStack() 可以实现弹出事务所实现的返回效果,此外它还可以确保视图状态、已保存的实例状态,以及 ViewModel 实例能够在销毁时被保存。这使得 restoreBackStack() API 后续可以通过已保存的状态重建这些事务和它们的 Fragment,并且高效 "重现" 已保存的全部细节。太神奇了!

而实现这个目的必须要解决大量技术上的问题。

虽然 Fragment 总是会保存 Fragment 的视图状态,但是 Fragment 的 onSaveInstanceState() 方法只有在 Activity 的 onSaveInstanceState() 被调用时才会被调用。为了能够保证调用 saveBackStack() 时 SavedInstanceState 会被保存,我们 需要在 Fragment 生命周期切换 的正确时机注入对 onSaveInstanceState() 的调用。我们不能调用得太早 (您的 Fragment 不应该在 STARTED 状态下保存状态),也不能调用得太晚 (您需要在 Fragment 被销毁之前保存状态)。

这样的前提条件就开启了需要 解决 FragmentManager 转换到对应状态的问题,以此来保障有一个地方能够将 Fragment 转换为所需状态,并且处理可重入行为和 Fragment 内部的状态转换。

在 Fragment 的重构工作进行了 6 个月,进行了 35 次修改时,发现 Postponed Fragment 功能已经严重损坏,这一问题使得被推迟的事务处于一个中间状态 —— 既没有被提交也并不是未被提交。之后的 65 个修改和 5 个月的时间里,我们几乎重写了 FragmentManager 管理状态、延迟状态切换和动画的内部代码,具体请参见我们之前的文章《全新的 Fragment: 使用新的状态管理器》。

随着技术问题的逐步解决,包括更加可靠和更易理解的 FragmentManager ,我们新增加了两个 API: saveBackStack() 和 restoreBackStack() 。

如果您不使用这些新增 API,则一切照旧: 单个 FragmentManager 返回栈和之前的功能相同。现有的 addToBackStack() 保持不变 —— 您可以将 name 赋值为 null 或者任意 name 。然而,当您使用多返回栈时, name 的作用就非常重要了: 在您调用 saveBackStack() 和之后的 restoreBackStack() 方法时,它将作为 Fragment 事务的唯一的 key。

举个例子,会更容易理解。比如您已经添加了一个初始的 Fragment 到 Activity,然后提交了两个事务,每个事务中包含一个单独的 replace 操作:

也就是说我们的 FragmentManager 会变成这样:

比如说我们希望将 profile 页换出返回栈,然后切换到通知 Fragment。这就需要调用 saveBackStack() 并且紧跟一个新的事务:

现在我们添加 ProfileFragment 的事务和添加 EditProfileFragment 的事务都保存在 "profile" 关键字下。这些 Fragment 已经完全将状态保存,并且 FragmentManager 会随同事务状态一起保持它们的状态。很重要的一点: 这些 Fragment 的实例并不在内存中或者在 FragmentManager 中 —— 存在的仅仅只有状态 (以及任何以 ViewModel 实例形式存在的非配置状态)。

替换回来非常简单: 我们可以在 "notifications" 事务中同样调用 saveBackStack() 操作,然后调用 restoreBackStack() :

这两个堆栈项高效地交换了位置:

维持一个单独且活跃的返回栈并且将事务在其中交换,这保证了当返回按钮被点击时, FragmentManager 和系统的其他部分可以保持一致的响应。实际上,整个逻辑并未改变,同之前一样,仍然弹出 Fragment 返回栈的最后一个事务。

这些 API 都特意按照最小化设计,尽管它们会产生潜在的影响。这使得开发者可以基于这些接口设计自己的结构,而无需通过任何非常规的方式保存 Fragment 的视图状态、已保存的实例状态、非配置的状态。

当然了,如果您不希望在这些 API 之上构建您的框架,那么可以使用我们所提供的框架进行开发。

Navigation Component 最初 是作为通用运行时组件进行开发的,其中不涉及 View、Fragment、Composable 或者其他屏幕显示相关类型及您可能会在 Activity 中实现的 "目的地界面"。然而,NavHost 接口 的实现中需要考虑这些内容,通过它添加一个或者多个 Navigator 实例时,这些实例 确实 清楚如何与特定类型的目的地进行交互。

这也就意味着与 Fragment 的交互逻辑全部封装在了 navigation-fragment 开发库和它其中的 FragmentNavigator 与 DialogFragmentNavigator 中。类似的,与 Composable 的交互逻辑被封装在完全独立的 navigation-compose 开发库和它的 ComposeNavigator 中。这里的抽象设计意味着如果您希望仅仅通过 Composable 构建您的应用,那么当您使用 Navigation Compose 时无需任何涉及到 Fragment 的依赖。

该级别的分离意味着 Navigation 中有两个层次来实现多返回栈:

仍需特别注意那些 尚未 更新的 Navigator ,它们无法支持保存自身状态。底层的 Navigator API 已经整体重写来支持状态保存 (您需要覆写新增的 navigate() 和 popBackStack() API 的重载方法,而不是覆写之前的版本),即使 Navigator 并未更新, NavController 仍会保存 NavBackStackEntry 的状态 (在 Jetpack 世界中向后兼容是非常重要的)。

如果您仅仅在应用中使用 Navigation,那么 Navigator 这个层面更多的是实现细节,而不是您需要直接与之交互的内容。可以这么说,我们已经完成了将 FragmentNavigator 和 ComposeNavigator 迁移到新的 Navigator API 的工作,使其能够正确地保存和恢复它们的状态,在这个层面上您无需再做任何额外工作。

如果您正在使用 NavigationUI,它是用于连接您的 NavController 到 Material 视图组件的一系列专用助手,您会发现对于菜单项、 BottomNavigationView (现在叫 NavigationRailView ) 和 NavigationView ,多返回栈是 默认启用 的。这就意味着结合 navigation-fragment 和 navigation-ui 使用就可以。

NavigationUI API 是基于 Navigation 的其他公共 API 构建的,确保您可以准确地为自定义组件构建您自己的版本。保证您可以构建所需的自定义组件。启用保存和恢复返回栈的 API 也不例外,在 Navigation XML 中通过 NavOptions 上的新 API,也就是 navOptions Kotlin DSL,以及 popBackStack() 的重载方法可以帮助您指定 pop 操作保存状态或者指定 navigate 操作来恢复之前已保存的状态。

比如,在 Compose 中,任何全局的导航模式 (无论是底部导航栏、导航边栏、抽屉式导航栏或者任何您能想到的形式) 都可以使用我们在与 底部导航栏集成 所介绍的相同的技术,并且结合 saveState 和 restoreState 属性一起调用 navigate() :

对用户来说,最令人沮丧的事情之一便是丢失之前的状态。这也是为什么 Fragment 用一整页来讲解 保存与 Fragment 相关的状态,而且也是我非常乐于更新每个层级来支持多返回栈的原因之一:

如果您希望了解 更多使用该 API 的示例,请参考 NavigationAdvancedSample (它是最新更新的,且不包含任何用于支持多返回栈的 NavigationExtensions 代码)。

对于 Navigation Compose 的示例,请参考 Tivi。

如果您遇到任何问题,请使用官方的问题追踪页面提交关于 Fragment 或者 Navigation 的 bug,我们会尽快处理。

阅读全文

与android定义栈相关的资料

热点内容
解压小游戏测试钻石剑的硬度 浏览:962
java结束函数 浏览:622
打开远程桌面的命令 浏览:836
树莓派如何搭建mqtt服务器 浏览:587
怎么加密w8文件 浏览:609
linuxprogram 浏览:708
php接口编程思想 浏览:92
如何下载电话软件app 浏览:906
java命令行解析 浏览:572
云服务器白嫖 浏览:917
程序员小清新 浏览:989
编译器地址8字节对齐 浏览:464
三菱plc编程win1064 浏览:258
高中英语单词pdf 浏览:425
编译原理词法分析常见问题 浏览:197
车小艺app怎么更新 浏览:77
手机app被管控如何移除 浏览:753
51单片机温湿度检测 浏览:575
安卓抖音显示没网络是怎么回事 浏览:819
2d我的世界源码 浏览:620