A. 单片机控制红外遥控编码解码中定时器和外部中断的作用是什么红外遥控编码解码的大致步骤是什么
同时使用上定时器 跟 外中断 的红外程序,只有解码程序。而且该方式,只能解析 使用不同时间长度代表数据“0”、“1” 的波形(如数据‘1’的时间长度 2倍于数据‘0’的时间)。
解析原理:外部中断接 红外输入,当有 红外信号的时候,该引脚会有波形输入(N多下降沿),触发外部中断,通过记录 每2次中断的时间间隔,可以判断此段时间对应的数据(0/1)。一般“数据”长度为32位数据
注意点:
①初次产生外中断的时候,并无 时间记录,不需要进行时间判断;
②第二次中断与第一次中断 之间 的时间,是 红外的引导码,该时间一般多倍于数据时间(一般为ms级时间);
③第三次中断与第二次中断的时间,即为 第一个数据 的时间;
④第34次中断与第33次中断的时间间隔,即为 第32个数据的时间;
⑤后面 可能存在 停止位,是否存在,由遥控器决定;不过,一般都直接忽略该位,除非该位是由自己制作的遥控器 发出 的校验位;
⑥后面 可能存在 连发码,是否存在,由遥控器决定;
另外:一般红外数据的每个字节都是LSB在前,MSB在后的( 低位先发,高位后发)
软件要处理以下情况:
①干扰的处理,有些红外接收头不仅仅对38KHz频率光有反应,可能对人体红外、日光灯红外一样有反应,那就存在干扰。如果它只产生一次干扰,就会使系统卡在引导码接收阶段;
②引导码时间过短、过长 的处理;
③接收数据位数不足的处理;
④完成32位数据接收后,处理接收烂尾:后面不会有中断(如果需接收停止位、连发码,就增加对应数据长度),需要停止计时。
⑤进行数据校对,一般第一字节跟第二字节互为反码,第三字节跟第四字节互为反码,而且第一字节 代表 一个地址、一个密码,只有地址、密码正确,才能算合法的操作。
B. 红外遥控器原理 遥控器原理图
遥控器是一种用来远控机械的装置。现代的遥控器,主要是由集成电路电板和用来产生不同讯息的按钮所组成。下面一起来看看红外遥控器原理以及遥控器原理图吧。
红外遥控器原理
红外线遥控系统一般由发射器和接收器两部分组成。发射器由指令键、指令信号产生电路、调制电路、驱动电路及红外线发射器组成。当指令键被按下时,指令信号产生电路便产生所需要的控制信号,控制指令信号经调制电路调制后,最终由驱动电路驱动红外线发射器,发出红外线遥控指令信号。
接收器由红外线接收器件、前置放大电路、解调电路、指令信号检出电路、记忆及驱动电路、执行电路组成。当红外接收器件收到发射器的红外指令信号时,它将红外光信号变成电信号并送到前置放大电路进行放大,再经过解调器后,由信号检出电路将指令信号检出,最后由记忆电路和驱动电路驱动执行电路,实现各种操作。
控制信号一般以某些不同的特征来区分,常用的区分指令信号的特征是频率和码组特征,即用不同的频率或者编码的电信号代表不同的指令信号来实现遥控。所以红外遥控系统通常按照产生和区分控制指令信号的方式和特征分类,常分为频分制红外线遥控和码分制红外线遥控。
1红外遥控系统发射部分
红外遥控发射器由键盘矩阵、遥控专用集成电路、驱动电路和红外发光二极管三部分组成,结构如图1所示。
当有键按下时,系统延时一段时间防止干扰,然后启动振荡器,键编码器取得键码后从ROM中取得相应的指令代码(由0和1组成的代码),遥控器一般采用电池供电,为了节省电量和提高抗干扰能力,指令代码都是经32~56kHz范围内的载波调制后输出到放大电路,驱动红外发射管发射出940nm的红外光。当发送结束时振荡器也关闭,系统处于低功耗休眠状态。载波的频率、调制频率在不同的场合会有不同,不过家用电器多采用的是38kHz的,也就是用455kHz的振荡器经过12分频得到的。
遥控发射器的信号是由一串0和1的二进制代码组成的,不同的芯片对0和1的编码有所不同,现有的红外遥控包括两种方式:脉冲宽度调制(PWW)和脉冲位置调制(PPM或曼彻斯特编码)。两种形式编码的代表分别是NEC和PHILIPS的RC-5。
2红外遥控系统接收部分
接收部分是由放大器、限幅器、带通滤波器、解调器、积分器、比较器等组成的,比如采用较早的红外接收二极管加专用的红外处理电路的方法,如CXA20106,此种方法电路复杂,现在一般不采用。但是在实际应用中,以上所有的电路都集成在一个电路中,也就是我们常说的一体化红外接收头。一体化红外接收头按载波频率的不同,型号也不一样。由于与CPU的接口的问题,大部分接收电路都是反码输出,也就是说当没有红外信号时输出为1,有信号输出时为0,它只有三个引脚,分别是+5V电源、地、信号输出。
系统的设计
1单片机编码发射部分
①键盘部分
红外遥控器的发射器电路比较简单,由一个4×4矩形键盘、一个PNP驱动三极管、一个红外线发光二极管和两个限流电阻组成。要遥控哪台接收器由键盘输入,即由键盘输入要红外遥控的地址,地址经过编码、调制后通过红外发光二极管发射出去。
矩阵键盘部分由16个轻触按键按照4行4列排列,将行线所接的单片机的I/O口作为输出端,而列线所接的作为输入。当没有键被按下时,所有输出端都是高电平,代表没有键按下。有键按下时,则输入线就会被拉抵,这样,通过读入输入线的状态就可以知道是否有键被按下。
键盘的列线接到P1口的低4位,行线接到P1口的高4位,列线P1.0~P1.3设置为输入线,行线P1.4~P1.7设置为输出线。
检测当前是否有键被按下。检测的方法是使P1.4~P1.7输出为0,读取P1.0~P1.3的状态,若P1.0~P1.3为全1,则无键闭合,否则有键闭合。
去除键抖动。当检测到有键按下后,延时一段时间再做下一步检测判断。
若有键按下,应该识别出是哪一个键闭合。方法是对键盘的行线进行扫描。P1.4~P1.7按下面4种组合依次输出1110,1101,1011,0111,在每组行输出时读取P1.0~P1.3,若全为1,则表示0这行没有键输入,否则有键闭合。由此得到闭合键的行值和列值,然后采用计算的方法或者查表的方法将闭合键的行值和列值转换成所定义的值。
为了保证每闭合一次CPU仅作一次处理,必须去除键释放时的抖动。产生的键值放在发送数据库区,30H存放的是产生的键值,即要遥控的8位地址共1字节,31H放的是和30H中的相同的8位地址,地址码重发了一次,主要是加强遥控器的可靠性,如果两次地址码不相同,则说明本帧数据有错,应该丢弃。32H放的是00H(为了编程简单),33H放的是0FFH,一共32位数据。要发送数据时,只要到那里读取数据即可,然后调用发射子程序发送。
②载波部分
根据前面介绍的红外遥控的基本原理,红外遥控器编码调制的方法其实很简单,只要生成一定时间长的电平就可以。再通过一个38kHz载波调制便可以发射编码。载波的产生方法有多种,可以由CMOS门电路RC振荡器构成,或者由555时基电路构成等。
在此次设计中采用的是CPU延时,即用定时器中断完成,用单片机的T0定时产生38kHz载波。设定定时器为方式2,即自动恢复初值的8位计数器。TL0作为8位计数器,TH0作为计数初值寄存器,当TL0计数溢出时,一方面置1溢出标志位TF0,向CPU请求中断,同时将TH0内容送入TL0,使TL0从初值开始重新加1计数。因此,T0工作于方式2,定时精度比较高。根据计算,设定38KHz的定时初值,采用12kHz晶振的定时初值为0F3H,用11.0592kHz晶振时的初值为0F4H,设定好定时器中断,在中断程序中只写入取反P2.0(CPLP2.0),当要发送数据1时,前面560μs高电平发送时,先打开定时器中断,再启动定时器,允许定时器工作,延时560μs再关定时器,后面1690μs的低电平因为不发送信号,所以可以直接置P2.0高电平后,延时1690μs即可;数据0前面的560μs高电平和数据1的一样,后面560μs的低电平因为不发送信号,所以可以直接置P2.0高电平后,延时560μs即可。
2红外接收解码电路
红外遥控接收采用一体化红外接收头,它将红外接收二极管、放大器、解调、整形等电路安装在一起,只有三个引脚。红外接收头的信号输出端接单片机的INT0端,单片机中断INT0在红外脉冲下降沿时产生中断。电路如图3.3所示,图中增加一只PNP三极管对输出信号放大,R和C组成去耦电路抑制电源干扰。
3遥控信号的解码算法
平时,遥控器无键按下时,红外发射二极管不发出信号,遥控接收头输出信号1,有键按下时,0和1的编码的高电平经遥控接收头反相后会输出信号0,由于与单片机的中断脚相连,将会引起单片机中断(单片机预先设定为下降沿产生中断)。
遥控码发射时由9ms的高电平和4.5ms的低电平表示引导码,用560μs的高电平和560μs的低电平表示数据“0”,用560μs的高电平和1690μs的低电平表示数据“1”,引导码后面是4字节的数据。接收码是发射码的反向,所以判断数据中的高电平的长度是读出数据的要点,在这里用882μs(560~1690μs之间)作为标尺,如果882μs之后还是高电平则表示是数据1,将1写入寄存器即可(数据为1时还需要再延时一段时间使电平变低,用来检测下一个低电平的开始)。882μs后电平为低电平则表示是数据0,则将0写入寄存器中,之后再等待下一个低电平的到来。
继续接收下面的数据,当接收到32位数据时,说明一帧数据接收完毕,然后判断本次接收是否有效,如果两次地址码相同并且等于本系统的地址码,数据码和数据反码之和等于0FFH,则接收的本帧数据有效,点亮一只发光二极管,否则丢弃本次接收到的数据。
接收完毕后,初始化本次接收到的数据,准备下次遥控接收。
以上就是小编为大家介绍的遥控器原理,希望能够帮助到您。更多关于遥控器原理的相关资讯,请继续关注土巴兔学装修。
C. 单片机开发板自带的遥控器是个什么意思,它里面和一般键盘一样吗怎么用呢
单片机开发板自带的遥控器通常是NEC编码的红外遥控器,是为用户学习红外遥控解码而配备的,用户需要自己构建遥控器信号的解码程序,并自己定义遥控器上按键的功能。
有些开发板还带有连接键盘的PS/2插口,这是为了让用户学习PS/2接口协议而配备的,用户同样需要自己构建相关的程序,并定义按键功能。
D. 学习型红外遥控器的原理是怎样的
学习型红外遥控器的原理:
基本原理是发送端将基带二进制信号调制为一系列的脉冲串信号,通过红外发射管发射的红外信号,常用的有通过脉冲宽度来实现信号调制的脉宽调制(PWM)和通过脉冲串之间的时间间隔来实现信号调制的脉时调制(PPM)两种方法。
学习型遥控常用的载波频率为38kHz,这是由发射端编码芯片所使用的455kHz晶振来决定的,其他的遥控系统采用36kHz、40kHz、56kHz等。现在采用一体化接收头做为信号的接收,把解调出来的信号送入单片机进行学习(记录各个高低电平的时间长度),然后存入EEPROM内,学习完成后再将EEPROM的高低电平的时间数据读取并与38kHz载波进行调制,然后红外发光管发送出去。
E. 用51单片机制作学习型红外遥控器的原理
以下是程序,调试成功,LCD1602显示
//本解码程序适用于NEC的upd6121及其兼容芯片的解码,支持大多数遥控器实验板采用11.0592MHZ晶振
#include<reg52.h>//包含单片机寄存器的头文件
#include<intrins.h>//包含_nop_()函数定义的头文件
sbitIR=P3^2;//将IR位定义为P3.2引脚
sbitRS=P2^0;//寄存器选择位,将RS位定义为P2.0引脚
sbitRW=P2^1;//读写选择位,将RW位定义为P2.1引脚
sbitE=P2^2;//使能信号位,将E位定义为P2.2引脚
sbitBF=P0^7;//忙碌标志位,,将BF位定义为P0.7引脚
sbitBEEP=P3^6;//蜂鸣器控制端口P36
unsignedcharflag;
unsignedcharcodestring[]={"1602IR-CODETEST"};
unsignedchara[4];//储存用户码、用户反码与键数据码、键数据反码
unsignedintLowTime,HighTime;//储存高、低电平的宽度
/*****************************************************
函数功能:延时1ms
***************************************************/
voiddelay1ms()
{
unsignedchari,j;
for(i=0;i<10;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
voiddelay(unsignedcharn)
{
unsignedchari;
for(i=0;i<n;i++)
delay1ms();
}
/*********************************************************/
voidbeep()//蜂鸣器响一声函数
{
unsignedchari;
for(i=0;i<100;i++)
{
delay1ms();
BEEP=!BEEP;//BEEP取反
}
BEEP=1;//关闭蜂鸣器
delay(250);//延时
}
/*****************************************************
函数功能:判断液晶模块的忙碌状态
返回值:result。result=1,忙碌;result=0,不忙
***************************************************/
unsignedcharBusyTest(void)
{
bitresult;
RS=0;//根据规定,RS为低电平,RW为高电平时,可以读状态
RW=1;
E=1;//E=1,才允许读写
_nop_();//空操作
_nop_();
_nop_();
_nop_();//空操作四个机器周期,给硬件反应时间
result=BF;//将忙碌标志电平赋给result
E=0;
returnresult;
}
/*****************************************************
函数功能:将模式设置指令或显示地址写入液晶模块
入口参数:dictate
***************************************************/
voidWriteInstruction(unsignedchardictate)
{
while(BusyTest()==1);//如果忙就等待
RS=0;//根据规定,RS和R/W同时为低电平时,可以写入指令
RW=0;
E=0;//E置低电平(根据表8-6,写指令时,E为高脉冲,
//就是让E从0到1发生正跳变,所以应先置"0"
_nop_();
_nop_();//空操作两个机器周期,给硬件反应时间
P0=dictate;//将数据送入P0口,即写入指令或地址
_nop_();
_nop_();
_nop_();
_nop_();//空操作四个机器周期,给硬件反应时间
E=1;//E置高电平
_nop_();
_nop_();
_nop_();
_nop_();//空操作四个机器周期,给硬件反应时间
E=0;//当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:指定字符显示的实际地址
入口参数:x
***************************************************/
voidWriteAddress(unsignedcharx)
{
WriteInstruction(x|0x80);//显示位置的确定方法规定为"80H+地址码x"
}
/*****************************************************
函数功能:将数据(字符的标准ASCII码)写入液晶模块
入口参数:y(为字符常量)
***************************************************/
voidWriteData(unsignedchary)
{
while(BusyTest()==1);
RS=1;//RS为高电平,RW为低电平时,可以写入数据
RW=0;
E=0;//E置低电平(根据表8-6,写指令时,E为高脉冲,
//就是让E从0到1发生正跳变,所以应先置"0"
P0=y;//将数据送入P0口,即将数据写入液晶模块
_nop_();
_nop_();
_nop_();
_nop_();//空操作四个机器周期,给硬件反应时间
E=1;//E置高电平
_nop_();
_nop_();
_nop_();
_nop_();//空操作四个机器周期,给硬件反应时间
E=0;//当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:对LCD的显示模式进行初始化设置
***************************************************/
voidLcdInitiate(void)
{
delay(15);//延时15ms,首次写指令时应给LCD一段较长的反应时间
WriteInstruction(0x38);//显示模式设置:16×2显示,5×7点阵,8位数据接口
delay(5);//延时5ms
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x0C);//显示模式设置:显示开,有光标,光标闪烁
delay(5);
WriteInstruction(0x06);//显示模式设置:光标右移,字符不移
delay(5);
WriteInstruction(0x01);//清屏幕指令,将以前的显示内容清除
delay(5);
}
/************************************************************
函数功能:对4个字节的用户码和键数据码进行解码
说明:解码正确,返回1,否则返回0
出口参数:dat
*************************************************************/
bitDeCode(void)
{
unsignedchari,j;
unsignedchartemp;//储存解码出的数据
for(i=0;i<4;i++)//连续读取4个用户码和键数据码
{
for(j=0;j<8;j++)//每个码有8位数字
{
temp=temp>>1;//temp中的各数据位右移一位,因为先读出的是高位数据
TH0=0;//定时器清0
TL0=0;//定时器清0
TR0=1;//开启定时器T0
while(IR==0)//如果是低电平就等待
;//低电平计时
TR0=0;//关闭定时器T0
LowTime=TH0*256+TL0;//保存低电平宽度
TH0=0;//定时器清0
TL0=0;//定时器清0
TR0=1;//开启定时器T0
while(IR==1)//如果是高电平就等待
;
TR0=0;//关闭定时器T0
HighTime=TH0*256+TL0;//保存高电平宽度
if((LowTime<370)||(LowTime>640))
return0;//如果低电平长度不在合理范围,则认为出错,停止解码
if((HighTime>420)&&(HighTime<620))//如果高电平时间在560微秒左右,即计数560/1.085=516次
temp=temp&0x7f;//(520-100=420,520+100=620),则该位是0
if((HighTime>1300)&&(HighTime<1800))//如果高电平时间在1680微秒左右,即计数1680/1.085=1548次
temp=temp|0x80;//(1550-250=1300,1550+250=1800),则该位是1
}
a[i]=temp;//将解码出的字节值储存在a[i]
}
if(a[2]=~a[3])//验证键数据码和其反码是否相等,一般情况下不必验证用户码
return1;//解码正确,返回1
}
/*------------------二进制码转换为压缩型BCD码,并显示---------------*/
voidtwo_2_bcd(unsignedchardate)
{
unsignedchartemp;
temp=date;
date&=0xf0;
date>>=4;//右移四位得到高四位码
date&=0x0f;//与0x0f想与确保高四位为0
if(date<=0x09)
{
WriteData(0x30+date);//lcd显示键值高四位
}
else
{
date=date-0x09;
WriteData(0x40+date);
}
date=temp;
date&=0x0f;
if(date<=0x09)
{
WriteData(0x30+date);//lcd显示低四位值
}
else
{
date=date-0x09;
WriteData(0x40+date);
}
WriteData(0x48);//显示字符'H'
}
/************************************************************
函数功能:1602LCD显示
*************************************************************/
voidDisp(void)
{
WriteAddress(0x40);//设置显示位置为第一行的第1个字
two_2_bcd(a[0]);
WriteData(0x20);
two_2_bcd(a[1]);
WriteData(0x20);
two_2_bcd(a[2]);
WriteData(0x20);
two_2_bcd(a[3]);
}
/************************************************************
函数功能:主函数
*************************************************************/
voidmain()
{
unsignedchari;
LcdInitiate();//调用LCD初始化函数
delay(10);
WriteInstruction(0x01);//清显示:清屏幕指令
WriteAddress(0x00);//设置显示位置为第一行的第1个字
i=0;
while(string[i]!='