㈠ 如何学习单片机中外围电路设计
1、充分了解各方的设计需求,确定合适的解决方案
启动一个硬件开发项目,原始的推动力会来自于很多方面,比如市场的需要,基于整个系统架构的需要,应用软件部门的功能实现需要,提高系统某方面能力的需要等等,所以作为一个硬件系统的设计者,要主动的去了解各个方面的需求,并且综合起来,提出最合适的硬件解决方案。比如A项目的原始推动力来自于公司内部的一个高层软件小组,他们在实际当中发现原有的处理器板IP转发能力不能满足要求,从而对于系统的配置和使用都会造成很大的不便,所以他们提出了对新硬件的需求。根据这个目标,硬件方案中就针对性的选用了两个高性能网络处理器,然后还需要深入的和软件设计者交流,以确定内存大小,内部结构,对外接口和调试接口的数量及类型等等细节,比如软件人员喜欢将控制信令通路和数据通路完全分开来,这样在确定内部数据走向的时候要慎重考虑。项目开始之初是需要召开很多的讨论会议的,应该尽量邀请所有相关部门来参与,好处有三个,第一可以充分了解大家的需要,以免在系统设计上遗漏重要的功能,第二是可以让各个部门了解这个项目的情况,提早做好时间和人员上协作的准备,第三是从感情方面讲,在设计之初各个部门就参与了进来,这个项目就变成了大家共同的一个心血结晶,会得到大家的呵护和良好合作,对完成工作是很有帮助的。
2、原理图设计中要注意的问题
原理图设计中要有“拿来主义”,现在的芯片厂家一般都可以提供参考设计的原理图,所以要尽量的借助这些资源,在充分理解参考设计的基础上,做一些自己的发挥。当主要的芯片选定以后,最关键的外围设计包括了电源,时钟和芯片间的互连。
电源是保证硬件系统正常工作的基础,设计中要详细的分析:系统能够提供的电源输入;单板需要产生的电源输出;各个电源需要提供的电流大小;电源电路效率;各个电源能够允许的波动范围;整个电源系统需要的上电顺序等等。比如A项目中的网络处理器需要1.25V作为核心电压,要求精度在+5%- -3%之间,电流需要12A左右,根据这些要求,设计中采用5V的电源输入,利用Linear的开关电源控制器和IR的MOSFET搭建了合适的电源供应电路,精度要求决定了输出电容的ESR选择,并且为防止电流过大造成的电压跌落,加入了远端反馈的功能。
时钟电路的实现要考虑到目标电路的抖动等要求,A项目中用到了GE的PHY器件,刚开始的时候使用一个内部带锁相环的零延时时钟分配芯片提供100MHz时钟,结果GE链路上出现了丢包,后来换成简单的时钟Buffer器件就解决了丢包问题,分析起来就是内部的锁相环引入了抖动。
芯片之间的互连要保证数据的无误传输,在这方面,高速的差分信号线具有速率高,好布线,信号完整性好等特点,A项目中的多芯片间互连均采用了高速差分信号线,在调试和测试中没有出现问题。
3、PCB设计中要注意的问题
PCB设计中要做到目的明确,对于重要的信号线要非常严格的要求布线的长度和处理地环路,而对于低速和不重要的信号线就可以放在稍低的布线优先级上。重要的部分包括:电源的分割;内存的时钟线,控制线和数据线的长度要求;高速差分线的布线等等。
A项目中使用内存芯片实现了1G大小的DDR memory,针对这个部分的布线是非常关键的,要考虑到控制线和地址线的拓扑分布,数据线和时钟线的长度差别控制等方面,在实现的过程中,根据芯片的数据手册和实际的工作频率可以得出具体的布线规则要求,比如同一组内的数据线长度相差不能超过多少个mil,每个通路之间的长度相差不能超过多少个mil等等。当这些要求确定后就可以明确要求PCB设计人员来实现了,如果设计中所有的重要布线要求都明确了,可以转换成整体的布线约束,利用CAD中的自动布线工具软件来实现PCB设计,这也是在高速PCB设计中的一个发展趋势。
4、检查和调试
当准备调试一块板的时候,一定要先认真的做好目视检查,检查在焊接的过程中是否有可见的短路和管脚搭锡等故障,检查是否有元器件型号放置错误,第一脚放置错误,漏装配等问题,然后用万用表测量各个电源到地的电阻,以检查是否有短路,这个好习惯可以避免贸然上电后损坏单板。调试的过程中要有平和的心态,遇见问题是非常正常的,要做的就是多做比较和分析,逐步的排除可能的原因,要坚信“凡事都是有办法解决的”和“问题出现一定有它的原因”,这样最后一定能调试成功。
5、一些总结的话
现在从技术的角度来说,每个设计最终都可以做出来,但是一个项目的成功与否,不仅仅取决于技术上的实现,还与完成的时间,产品的质量,团队的配合密切相关,所以良好的团队协作,透明坦诚的项目沟通,精细周密的研发安排,充裕的物料和人员安排,这样才能保证一个项目的成功。
一个好的硬件工程师实际上就是一个项目经理,他/她需要从外界交流获取对自己设计的需求,然后汇总,分析成具体的硬件实现。还要跟众多的芯片和方案供应商联系,从中挑选出合适的方案,当原理图完成后,他/她要组织同事来进行配合评审和检查,还要和CAD工程师一起工作来完成PCB的设计。与此同时,还要准备好BOM清单,开始采购和准备物料,联系加工厂家完成板的贴装。在调试的过程中他/她要组织好软件工程师来一起攻关调试,配合测试工程师一起解决测试中发现的问题,等到产品推出到现场,如果出现问题,还需要做到及时的支持。所以做一个硬件设计人员要锻炼出良好的沟通能力,面对压力的调节能力,同一时间处理多个事务的协调和决断能力和良好平和的心态等等。
还有细心和认真,因为硬件设计上的一个小疏忽往往就会造成非常大的经济损失,比如以前碰到一块板在PCB设计完备出制造文件的时候误操作造成了电源层和地层连在了一起,PCB板制造完毕后又没有检查直接上生产线贴装,到测试的时候才发现短路问题,但是元器件已经都焊接到板上了,结果造成了几十万的损失。所以细心和认真的检查,负责任的测试,不懈的学习和积累,才能使得一个硬件设计人员持续不断的进步,而后事业有所小成。
㈡ 单片机中 什么是外围模块
单片机的外围模块主要如下:
1、并口,如P0~P3
2、定时器
3、串口
4、AD转换口(有的有,如STC的大部分单片机)
等等。
㈢ 单片机芯片的地是接模拟地还是数字地,~还有连单片机接口的外围电路的地是接什么
几乎绝大部分的单片机系统都是模拟地,关于外围电路就是震荡电路喽,接个晶体再加一些电源什么的就是最小单片机系统了。。。。望采纳
㈣ 单片机的基本外围电路
单片机的基本外围电路:
复位电路中电阻R1=10k时RST是高电平 ,而当R1=50时RST为低电平,很明显R1=10k时是错误的,单片机一直处在复位状态时根本无法工作。
出现这样的原脊好因是由于RST引脚内含三极管,即便在截止状态时也会有少量截止电流,当R取的非常大时,微弱的截止电流通过就产生了高电平。
滤波电容
滤波电容分为高频滤波电容和低频滤波电容。
1、高频滤波电容一般用104容(孙行0.1uF),目的是短路高频分量则野哗,保护器件免受高频干扰。普通的IC(集成)器件的电源与地之间都要加,去除高频干扰(空气静电)。
2、低频滤波电容一般用电解电容(100uF),目的是去除低频纹波,存储一部分能量,稳定电源。大多接在电源接口处,大功率元器件旁边,如:USB借口,步进电机、1602背光显示。耐压值至少高于系统最高电压的2倍。
㈤ 外围电路(如二极管)到底接单片机io口的p几接口
如果你只需要单片机输出逻辑电平(即高低电平)时,单片机所有PIO口都可以实现;
只是P0口内部没有上拉枣唤电阻,需要外接上拉电阻;
这里你没有说清楚你的外围电路要实现什么功能,如何连接,自然是建议你谨慎操作不能随便乱接;
如你说的二极管,是做什么用的,打算怎么连接,都没个电路图,你没说清楚就等于让人去毕隐猜你的问题手岩厅,这样不行的
㈥ 单片机外部扩展存储器的四个I/O接口各起什么作用
当单片机外部扩展存储器一般要采用总线扩展:
1P0口将作为总线的低8位地址线和8位返颤数据线使用
2P2口将作为总线的高8位地址线使用没有使用的乎咐高位地址线将作为存储器的片选信号
3P3口的P3.6和P3.7将作为片外数据存储器的写信号、读信号即做控制总线使用
单片机的29引脚PSEN将作为片外程序存储器的读信号。
P3口其它引脚可作为专用线使用岁世纯如定时计数器的输入、外部中断0和1的输入、串行口的
数据输入、输出线。
4P1口可以做I/O口使用连接输入/输出设备
㈦ 单片机主要外围器件
单片机外围器件,常跟单片机外围电路相关,其电路主要有键盘输入 、A/D输入,温度、通讯、I2C存储等单元电路,输出主要有LED或者LCD输出,一般控制接口输出,在配相应的功率驱动IC。和以上相关的常见外围器件有:通讯电平转换芯片(比如SP3232EEY,相似型号还有很多)、I2C存储器(一般是24C02、24C04、FM24CL16等,根据最后数据大小确定存储容量)、温度(DS1820单总线、DS600U)、LED数码管驱动(CH452A V2)、输出驱动一般用继电器转换控制,也有专用芯片等。其它日历有2300系列。
㈧ 单片机外围接口电路与工程实践的基本信息
单片机外围接口电路是指单片机通过外接其他电路或器件,实现与外部环境的信息交换。常见的外围接口包括数字输入输出口、模拟输入输出口、串行通信接口、并行通信接口等。在工程实践中携手,单片机外围接口电路的设计与实现是非常重要的。根据猛启具辩知嫌体应用场景和需求,需要进行电路设计、模拟仿真、PCB设计、软件编程等工作。此外,还需要对接外部传感器、执行器等元件,进行信号采集、控制输出等操作。在实践中,需要注意单片机与外围接口电路之间的电气特性匹配,如电平、电流、阻抗等参数。同时,还要考虑系统的可靠性、抗干扰性、可维护性等因素。㈨ 请教:关于STC单片机AD外围电路
呵呵
为你解答
单片机几种常见的外围电路及作用:
1键盘显示接口电路:
用于下达用户命令和传送、修改单片机内部的数据、参数,同时可以将运算结果送显示器上显示。
可用
8279或74LS164芯片进行键盘、显示电路的扩展。
2模拟量输入通道:
数据采集和测量,将工业现场的非电量转换成电量(如电压、电流),再经过模数转换器转换为数字量送给单片机。
一般由传感器、运算放大器、多路开关、模数转换器等组成。
3模拟量输出通道:
将计算的结果数字量经数模转换器转换成模拟量(电压、电流)反过来去控制工业的现场设备。
4
单片机与电脑的通讯接口电路:
完成单片机与电脑之间的连接,采用串口通讯,进行单片机与电脑之间的数据信息传送。
5
继电器驱动电路:
完成对继电器线圈的控制,驱动继电器动作。
还有一些
就不再一一例举了
如满意
请选择:满意回答