① 如何使用51单片机利用红外线发射接收对管或红外接收一体化头实现侧车流量(计数)
楼上是对的,其实程序不复杂,但电路是比较复杂的,你了解下红外波瓣宽度是多少,监测距离多远竖皮,车间间距多少,要不然做出来没意义的,当两车离得近时分不出来,当车体较袭纤者远或者红外反射系数低时识别不到,这里除了拍薯电路处理外也可用光学处理,光学你就天天去擦镜头上的灰尘吧,电路处理得想办法增大发射功率,压缩垂直波瓣宽度,程序里的算法还要滤波,等等,看了这些你觉得简单吗?还矩阵?
② 急求一红外管计数器,51单片机控制的C程序
电路都没看到就要程序?这个不难的 一个统计进来的人数 一个统计出去的人数 当人数是0的时候就给个控制信号关灯
③ 51单片机计数器怎么用
51单片机是基础入门的一个单片机,还是应用最广泛的。
51单片机的定时/计数器的概念
单片机中,脉冲计数与时间之间的关系十分密切,每输入一个脉冲,计数器的值就会自动累加1,只要相邻两个计数脉冲之间的时间间隔相等,则计数值就代表了时间的流逝,因此,单片机中的定时器和计数器其实是同一个物理的电子元件,只不过计数器记录的是单片机外部发生的事情(接受的是外部脉冲),而定时器则是由单片机自身提供的一个非常稳定的计数器,这个稳定的计数器就是单片机上连接的晶振部件;MCS-51单片机的晶振经过12分频之后提供给单片机稳定脉冲;晶振的频率是非常准确的,所以单片机的计数脉冲之间的时间间隔也是非常准确的。
51单片机的定时/计数器的工作原理
加1计数器输入的计数脉冲有两个来源,一个是由系统的时钟振荡器输出脉冲经12分频后送来;一个是T0或T1引脚输入的外部脉冲源。
作为定时器使用时,定时器计数8051单片机片内振荡器输出经过12分频后的脉冲个数,即:每个机器周期使定时器T0/T1的寄存器值自动累加1,直到溢出,溢出后继续从0开始循环计数;所以,定时器的分辨率是时钟振荡频率的1/12;
作为计数器使用时,通过引脚T0(P3.4)或T1(P3.5)对外部脉冲信号进行计数,当输入的外部脉冲信号发生从1到0的负跳变时,计数器的值就自动加1由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2微秒。;计数器的最高频率一般是时钟振荡频率的1/24;
由此可知,不论是定时器还是计数器工作方式,定时器T0和T1均不占用CPU的时间,除非定时器/计数器T0和T1溢出,才可能引起CPU中断,转而去执行中断处理程序。所以说,定时器/计数器是单片机中效率高而工作灵活的部件。
④ 关于51单片机的红外计数实验问题,写完程序后数码管数值不会改变。求大神指点。。。。。。
以STC89C52RC单片机为例,部分程序如下:
void initTimer1(void) //初始化定时器1
{
AUXR |= 0x40; //定时器1工作于1T模式
TMOD |= 0x60; //设置定时器1运行模式2 (8-bit 自动装载)
TL1 = TH1 = 0xff; //初始值
TR1 = 1; //定时器1开始运行
EA = 1; //开总中断
ET1 = 1; //使能定时器1中断
}
//--------------------------------------------
void T1int() interrupt 3 //中断
{
ucCount++; //计数
flag = 1;
}
//------------------------------------------
这个表格定义一般用code:
unsigned char code num[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x98};//0----9
前面声明变量增加ucCount和flag:
unsigned char ucCount = 0;
bit flag = 0;
主程序:
viod main(viod)
{
aa=1;
bb=1;
initTimer1();
m=0;
n=0;
while(1)
{
if(flag == 1)
{
flag = 0;
if(uiCount > 99) uiCount = 0;
n = uiCount / 10;
m = uiCount % 10;
}
cc=num[m];
aa=0;
delay_nms();
aa=1;
cc=num[m];
bb=0;
delay_nms();
bb=1;
}
以上程序没有完整整理,但思路请参考。
PS:定义变量不要用诸如“c“这样的简单字母,因为容易和单片机内部寄存器混淆。
⑤ 基于51单片机的红外接收模块的c编程
#include<reg52.h> //包含单片机寄存器的头文件
#include<intrins.h> //包含_nop_()函数定义的头文件
sbit IR=P3^2; //将IR位定义为P3.2引脚
sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚
sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚
sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚
sbit BF=P0^7; //忙碌标志位,,将BF位定义为P0.7引脚
sbit BEEP = P3^6; //蜂鸣器控制端口P36
unsigned char flag;
unsigned char code string[ ]= {"1602IR-CODE TEST"};
unsigned char a[4]; //储存用户码、用户反码与键数据码、键数据反码
unsigned int LowTime,HighTime; //储存高、低电平的宽度
/*****************************************************
函数功能:延时1ms
***************************************************/
void delay1ms()
{
unsigned char i,j;
for(i=0;i<10;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
void delay(unsigned char n)
{
unsigned char i;
for(i=0;i<n;i++)
delay1ms();
}
/*********************************************************/
void beep() //蜂鸣器响一声函数
{
unsigned char i;
for (i=0;i<100;i++)
{
delay1ms();
BEEP=!BEEP; //BEEP取反
}
BEEP=1; //关闭蜂鸣器
delay(250); //延时
}
/*****************************************************
函数功能:判断液晶模块的忙碌状态
返回值:result。result=1,忙碌;result=0,不忙
***************************************************/
unsigned char BusyTest(void)
{
bit result;
RS=0; //根据规定,RS为低电平,RW为高电平时,可以读状态
RW=1;
E=1; //E=1,才允许读写
_nop_(); //空操作
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
result=BF; //将忙碌标志电平赋给result
E=0;
return result;
}
/*****************************************************
函数功能:将模式设置指令或显示地址写入液晶模块
入口参数:dictate
***************************************************/
void WriteInstruction (unsigned char dictate)
{
while(BusyTest()==1); //如果忙就等待
RS=0; //根据规定,RS和R/W同时为低电平时,可以写入指令
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
_nop_();
_nop_(); //空操作两个机器周期,给硬件反应时间
P0=dictate; //将数据送入P0口,即写入指令或地址
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:指定字符显示的实际地址
入口参数:x
***************************************************/
void WriteAddress(unsigned char x)
{
WriteInstruction(x|0x80); //显示位置的确定方法规定为"80H+地址码x"
}
/*****************************************************
函数功能:将数据(字符的标准ASCII码)写入液晶模块
入口参数:y(为字符常量)
***************************************************/
void WriteData(unsigned char y)
{
while(BusyTest()==1);
RS=1; //RS为高电平,RW为低电平时,可以写入数据
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
P0=y; //将数据送入P0口,即将数据写入液晶模块
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:对LCD的显示模式进行初始化设置
***************************************************/
void LcdInitiate(void)
{
delay(15); //延时15ms,首次写指令时应给LCD一段较长的反应时间
WriteInstruction(0x38); //显示模式设置:16×2显示,5×7点阵,8位数据接口
delay(5); //延时5ms
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x0C); //显示模式设置:显示开,有光标,光标闪烁
delay(5);
WriteInstruction(0x06); //显示模式设置:光标右移,字符不移
delay(5);
WriteInstruction(0x01); //清屏幕指令,将以前的显示内容清除
delay(5);
}
/************************************************************
函数功能:对4个字节的用户码和键数据码进行解码
说明:解码正确,返回1,否则返回0
出口参数:dat
*************************************************************/
bit DeCode(void)
{
unsigned char i,j;
unsigned char temp; //储存解码出的数据
for(i=0;i<4;i++) //连续读取4个用户码和键数据码
{
for(j=0;j<8;j++) //每个码有8位数字
{
temp=temp>>1; //temp中的各数据位右移一位,因为先读出的是高位数据
TH0=0; //定时器清0
TL0=0; //定时器清0
TR0=1; //开启定时器T0
while(IR==0) //如果是低电平就等待
; //低电平计时
TR0=0; //关闭定时器T0
LowTime=TH0*256+TL0; //保存低电平宽度
TH0=0; //定时器清0
TL0=0; //定时器清0
TR0=1; //开启定时器T0
while(IR==1) //如果是高电平就等待
;
TR0=0; //关闭定时器T0
HighTime=TH0*256+TL0; //保存高电平宽度
if((LowTime<370)||(LowTime>640))
return 0; //如果低电平长度不在合理范围,则认为出错,停止解码
if((HighTime>420)&&(HighTime<620)) //如果高电平时间在560微秒左右,即计数560/1.085=516次
temp=temp&0x7f; //(520-100=420, 520+100=620),则该位是0
if((HighTime>1300)&&(HighTime<1800)) //如果高电平时间在1680微秒左右,即计数1680/1.085=1548次
temp=temp|0x80; //(1550-250=1300,1550+250=1800),则该位是1
}
a[i]=temp; //将解码出的字节值储存在a[i]
}
if(a[2]=~a[3]) //验证键数据码和其反码是否相等,一般情况下不必验证用户码
return 1; //解码正确,返回1
}
/*------------------二进制码转换为压缩型BCD码,并显示---------------*/
void two_2_bcd(unsigned char date)
{
unsigned char temp;
temp=date;
date&=0xf0;
date>>=4; //右移四位得到高四位码
date&=0x0f; //与0x0f想与确保高四位为0
if(date<=0x09)
{
WriteData(0x30+date); //lcd显示键值高四位
}
else
{
date=date-0x09;
WriteData(0x40+date);
}
date=temp;
date&=0x0f;
if(date<=0x09)
{
WriteData(0x30+date); //lcd显示低四位值
}
else
{
date=date-0x09;
WriteData(0x40+date);
}
WriteData(0x48); //显示字符'H'
}
/************************************************************
函数功能:1602LCD显示
*************************************************************/
void Disp(void)
{
WriteAddress(0x40); // 设置显示位置为第一行的第1个字
two_2_bcd(a[0]);
WriteData(0x20);
two_2_bcd(a[1]);
WriteData(0x20);
two_2_bcd(a[2]);
WriteData(0x20);
two_2_bcd(a[3]);
}
/************************************************************
函数功能:主函数
*************************************************************/
void main()
{
unsigned char i;
LcdInitiate(); //调用LCD初始化函数
delay(10);
WriteInstruction(0x01);//清显示:清屏幕指令
WriteAddress(0x00); // 设置显示位置为第一行的第1个字
i = 0;
while(string[i] != '\0') //'\0'是数组结束标志
{ // 显示字符 www.RICHMCU.COM
WriteData(string[i]);
i++;
}
EA=1; //开启总中断
EX0=1; //开外中断0
ET0=1; //定时器T0中断允许
IT0=1; //外中断的下降沿触发
TMOD=0x01; //使用定时器T0的模式1
TR0=0; //定时器T0关闭
while(1); //等待红外信号产生的中断
}
/************************************************************
函数功能:红外线触发的外中断处理函数
*************************************************************/
void Int0(void) interrupt 0
{
EX0=0; //关闭外中断0,不再接收二次红外信号的中断,只解码当前红外信号
TH0=0; //定时器T0的高8位清0
TL0=0; //定时器T0的低8位清0
TR0=1; //开启定时器T0
while(IR==0); //如果是低电平就等待,给引导码低电平计时
TR0=0; //关闭定时器T0
LowTime=TH0*256+TL0; //保存低电平时间
TH0=0; //定时器T0的高8位清0
TL0=0; //定时器T0的低8位清0
TR0=1; //开启定时器T0
while(IR==1); //如果是高电平就等待,给引导码高电平计时
TR0=0; //关闭定时器T0
HighTime=TH0*256+TL0; //保存引导码的高电平长度
if((LowTime>7800)&&(LowTime<8800)&&(HighTime>3600)&&(HighTime<4700))
{
//如果是引导码,就开始解码,否则放弃,引导码的低电平计时
//次数=9000us/1.085=8294, 判断区间:8300-500=7800,8300+500=8800.
if(DeCode()==1) // 执行遥控解码功能
{
Disp();//调用1602LCD显示函数
beep();//蜂鸣器响一声 提示解码成功
}
}
EX0=1; //开启外中断EX0
}
⑥ 关于C51单片机红外线驱动LED发射和接收问题
最简单的,发送端:按一下键发一个脉冲;接收端:进行脉冲计数,用led显示。
发送端://12M晶体
#include "reg51.h"
#define KeyB P1^6
#define OutPin P1^7
bit Key1,Key2;
//timer init 20ms定时中断
void initTimer(void)
{
TMOD=0x1;
TH0=0x3c;
TL0=0xb0;
}
//timer0/counter0 interrupt
void timer0(void) interrupt 1
{
TH0=0x3c;
TL0=0xb0;
//add your code here.
Key1=Key2;
Key2=KeyB;
}
//the main fun
void main(void)
{
initTimer();
TR0=1;
ET0=1;
EA=1;//开中断
while(1)
{
OutPin=key1||key2;
}
}
接收端:
#include "reg51.h"
char Count
/薯册/int0 interrupt
void int0(void) interrupt 0
{
//add your code here
Count++;
}
//the main fun
void main(void)
{
IT0=1; //INT0下降沿中断
EX0=1; //允许尘中INT1中断
EA=1;
Count=0;//初始化计数器
while(1)派手山
{
P1=~Count;//图中的led应该是串电阻公共端接电源,P1口拉低亮,置高灭。
}
}
⑦ 关于51单片机红外解码程序,哪位大侠帮我看下
我以前做的一个项目,红外遥控开关,解码部分的code,供参考
6121码,外部中断0,at89s52
void int0() interrupt 0 //外部中断1服务函数,红外解码程序
{
static uchar wei; //定义静态变量
static uchar pp; //定义静态变量
if(tt<56&&tt>50) {d2=0; tt=0;pp=0;wei=0;}//起始信号符合,将d2标记为0,各变量清零
if(tt>11)tt=0;
if(d2==0&&tt>=4)
{
buf[pp]>>=1;
if(tt>5) buf[pp]|=0x80; //如果时间大于780us ,则视为收到数据1
wei++;
if(wei==8)
{
pp++;
wei=0;
if(pp==4) { pp=0; d2=1;} //接收满4个字节,标志位清除
} //在 d2为0期间进入中断8次,说明已经收到一个字节数据,字节号加1
}
tt=0;//每次进入中断都清零
}
void timer1() interrupt 3 //红外解码计时
{
tt++;
}