❶ 新手学嵌入式linux ,开发板哪个牌子好请前辈们指点!
我自己在用嵌视科技qs-pte9图像处理开发板,不用考虑底层开发,只有一个要求就是你会写算法即可,开发在pc上进行,编译完直接下载到开发板上执行就行了。板子上搭建有虚拟系统,移植很是分分中搞定,技术支持也不错。可以去了解下,目前开发板不用考虑底层开发直接用的好像就这一家。底层开发很麻烦,所以我就选了个简单实用的。适合初学者,另外板子运行的liunx系统,但开发还是在pc上。开发板还是选适合自己的,毕竟每个厂家侧重点不同,选择你认为你不好的地方刚刚那个板子提供满足你就行了。
❷ Linux内存系统
维基网络——虚拟内存定义
All about Linux swap space
Linux将物理RAM (Random Access Memory) 划分为称为页面的内存块。交换是将一页内存复制到硬盘上的预配置空间(称为交换空间)以释放改内存页面上的过程。物理内存和交换空间的组合就是可用的虚拟内存量。
虚拟内存的那点事儿
进程是与其他进程共享CPU和内存资源的。为了有效的管理内存并减少出错,现代操作系统提供了一种对主存的抽象概念,即:虚拟内存( Virtual Memory )。 虚拟内存为每个进程提供一个一致的,私有的地址空间,每个进程拥有一片连续完整的内存空间。
正如 维基网络 所说,虚拟内存不只是“使用硬盘空间来扩展内存”的技术。 虚拟内存的重要意义是它定义了一个连续的虚拟地址空间, 使得程序编写难度降低。并且, 把内存扩展到硬盘空间只是使用虚拟内存的必然结果,虚拟内存空间会存在硬盘中,并且会被全部放入内存中缓冲(按需),有的操作系统还会在内存不够的情况下,将一进程的内存全部放入硬盘空间中,并在切换到进程时再从硬盘读取 (这也是Windows会经常假死的原因...)。
虚拟内存主要提供了如下三个重要的能力:
内存通常被组织为一个由M个连续的字节大小的单元组成的数组。每个字节都有一个唯一的物理地址 (Physical Address PA) ,作为到数组的索引。
CPU访问内存最简单直接的方法就是使用物理地址,这种寻址方式称为 物理寻址 。
现代计算机使用的是一种被称为虚拟寻址 (Virtual Addressing) 的寻址方式。 使用虚拟寻址,CPU需要将虚拟地址翻译成物理地址,这样才能访问到真实的物理内存。
虚拟寻址需要硬件与操作系统之间相互合作。 CPU中含有一个被称为内存管理单元 (Memory Management Unit,MMU) 的硬件,它的功能是将虚拟地址转换称为物理地址,MMU需要借助存放在内存中的 页表 来动态翻译虚拟地址,该页表由操作系统管理。
分页表是一种数据结构,它用于计算机操作系统中虚拟内存系统,其存储了虚拟地址到物理地址之间的映射。虚拟地址在访问进程中是唯一的,而物理地址在硬件(比如内存)中是唯一的。
在操作系统中使用 虚拟内存 ,每个进程会认为使用一块大的连续的内存,事实上,每个进程的内存散布在 物理内存 的不同区域。或者可能被调出到备份存储中(一般是硬盘)。当一个进程请求自己的内存,操作系统负责把程序生成的虚拟地址,映射到实际存储的物理内存上。操作系统在 分页表 中存储虚拟地址到物理地址的映射。每个映射被称为 分页表项(page table entry ,PTE) 。
在一个简单的地址空间方案中,由虚拟地址寻址的页与物理内存中的帧之间的关系。物理内存可以包含属于许多进程的页。如果不经常使用,或者物理内存已满,可以将页面分页到磁盘。在上图中,并非所有页面都在物理内存中。
虚拟地址到物理地址的转换(即虚拟内存的管理)、内存保护、CPU高速缓存的控制。
现代的内存管理单元是以 页 的方式,分割虚拟地址空间(处理器使用的地址范围)的;页的大小是2的n次方,通常为几KB(字节)。地址尾部的n位(页大小的2的次方数)作为页内的偏移量保持不变。其余的地址位(address)为(虚拟)页号。
内存管理单元通常借助一种叫做转译旁观缓冲器(Translation Lookaside Buffer,TLB)和相联高速缓存来将虚拟页号转换为物理页号。当后备缓冲器中没有转换记录时,则使用一种较慢的机制,其中包括专用硬件的数据结构或软件辅助手段。这个数据结构称为 分页表 ,页表中的数据叫做 分页表项 (page table entry PTE)。物理页号结合页偏移量便提供了完整的物理地址。
页表 或 转换后备缓冲器数据项应该包括的信息有:
有时候,TLB和PTE会 禁止对虚拟页访问 ,这可能是因为没有RAM与虚拟页相关联。如果是这种情况,MMU将向CPU发出页错误的信号,操作系统将进行处理,也许会寻找RAM的空白帧,同时建立一个新的PTE将之映射到所请求的虚拟地址。如果没有空闲的RAM,可能必须关闭一个已经存在的页面,使用一些替换算法,将之保存到磁盘中(这被称为页面调度)。
当需要将虚拟地址转换为物理地址时,首先搜索TLB,如果找到匹配(TLB)命中,则返回物理地址并继续存储器访问。然而,如果没有匹配(称为TLB未命中),则MMU或操作系统TLB未命中处理器通常会查找 页表 中的地址映射以查看是否存在映射(页面遍历),如果存在,则将其写回TLB(这必须完成,因为硬件通过虚拟存储器系统中的TLB访问存储器),并且重启错误指令(这也可以并行发生)。此后续转换找到TLB命中,并且内存访问将继续。
虚拟地址到物理地址的转换过程,如果虚拟内存不存在与TLB,转换会被重置并通过分页表和硬件寻找。
通常情况下,用于处理此中断的程序是操作系统的一部分。如果操作系统判断此次访问有效,那么 操作系统会尝试将相关的分页从硬盘上的虚拟内存文件调入内存。 而如果访问是不被允许的,那么操作系统通常会结束相关的进程。
虽然叫做“页缺失”错误,但实际上这并不一定是一种错误。而且这一机制是利用虚拟内存来增加程序可用内存空间。
发生这种情况的可能性:
当原程序再次需要该页内的数据时,如果这一页确实没有被分配出去,那么系统只需要重新为该页在MMU内注册映射即可。
操作系统需要:
硬性页缺失导致的性能损失是很大的。
另外,有些操作系统会将程序的一部分延迟到需要使用的时候再加载入内存执行,以此提升性能。这一特性也是通过捕获硬性页缺失达到的。
当硬性页缺失过于频繁发生时,称发生 系统颠簸。
具体动作与所使用的操作系统有关,比如Windows会使用异常机制向程序报告,而类Unix系统则使用信号机制。
尽管在整个运行过程中,程序引用不同的页面总数(也就是虚拟内存大小)可能超出了物理存储器(DRAM)总大小,但是程序常常在较小的活动页面上活动,这个集合叫做工作集或者常驻集。在工作集被缓存后,对它的反复调用会使程序命中提高,从而提高性能。
大部分的程序都可以在存储器获取数据和读取中达到稳定的状态,当程序达到稳定状态时,存储器的使用量通常都不会太大。虚拟内存虽然可以有效率控制存储器的使用, 但是大量的页缺失还是造成了系统迟缓的主要因素。 当工作集的大小超过物理存储器大小,程序将会发生一种不幸的情况,这种情况称为 “颠簸” ,页面将不停的写入、释放、读取,由于大量的丢失(而非命中)而损失极大性能。用户可以增加随机存取存储器的大小或是减少同时在系统里运行程序的数量来降低系统颠簸的记录。
推荐阅读:
操作系统--分页(一)
操作系统实现(二):分页和物理内存管理
❸ Linux 虚拟地址空间如何分布
一个进程的虚拟地址空间主要由两个数据结来描述。一个是最高层次的:mm_struct,一个是较高层次的:vm_area_structs。最高层次的mm_struct结构描述了一个进程的整个虚拟地址空间。较高层次的结构vm_area_truct描述了虚拟地址空间的一个区间(简称虚拟区)。
1. MM_STRUCT结构
mm_strcut 用来描述一个进程的虚拟地址空间,在/include/linux/sched.h 中描述如下:
struct mm_struct {
struct vm_area_struct * mmap; /* 指向虚拟区间(VMA)链表 */
rb_root_t mm_rb; /*指向red_black树*/
struct vm_area_struct * mmap_cache; /* 指向最近找到的虚拟区间*/
pgd_t * pgd; /*指向进程的页目录*/
atomic_t mm_users; /* 用户空间中的有多少用户*/
atomic_t mm_count; /* 对"struct mm_struct"有多少引用*/
int map_count; /* 虚拟区间的个数*/
struct rw_semaphore mmap_sem;
spinlock_t page_table_lock; /* 保护任务页表和 mm->rss */
struct list_head mmlist; /*所有活动(active)mm的链表 */
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long rss, total_vm, locked_vm;
unsigned long def_flags;
unsigned long cpu_vm_mask;
unsigned long swap_address;
unsigned mpable:1;
/* Architecture-specific MM context */
mm_context_t context;
};
对该结构进一步说明如下:
在内核代码中,指向这个数据结构的变量常常是mm。
每个进程只有一个mm_struct结构,在每个进程的task_struct结构中,有一个指向该进程的结构。可以说,mm_struct结构是对整个用户空间的描述。
一个进程的虚拟空间中可能有多个虚拟区间(参见下面对vm_area_struct描述),对这些虚拟区间的组织方式有两种,当虚拟区较少时采用单链表,由mmap指针指向这个链表,当虚拟区间多时采用“红黑树(red_black
tree)”结构,由mm_rb指向这颗树。在2.4.10以前的版本中,采用的是AVL树,因为与AVL树相比,对红黑树进行操作的效率更高。
因为程序中用到的地址常常具有局部性,因此,最近一次用到的虚拟区间很可能下一次还要用到,因此,把最近用到的虚拟区间结构应当放入高速缓存,这个虚拟区间就由mmap_cache指向。
指针pgt指向该进程的页目录(每个进程都有自己的页目录,注意同内核页目录的区别),当调度程序调度一个程序运行时,就将这个地址转成物理地址,并写入控制寄存器(CR3)。
由于进程的虚拟空间及其下属的虚拟区间有可能在不同的上下文中受到访问,而这些访问又必须互斥,所以在该结构中设置了用于P、V操作的信号量mmap_sem。此外,page_table_lock也是为类似的目的而设置。
虽然每个进程只有一个虚拟地址空间,但这个地址空间可以被别的进程来共享,如,子进程共享父进程的地址空间(也即共享mm_struct结构)。所以,用mm_user和mm_count进行计数。类型atomic_t实际上就是整数,但对这种整数的操作必须是“原子”的。
另外,还描述了代码段、数据段、堆栈段、参数段以及环境段的起始地址和结束地址。这里的段是对程序的逻辑划分,与我们前面所描述的段机制是不同的。
mm_context_t是与平台相关的一个结构,对i386 几乎用处不大。
在后面对代码的分析中对有些域给予进一步说明。
2. VM_AREA_STRUCT 结构
vm_area_struct描述进程的一个虚拟地址区间,在/include/linux/mm.h中描述如下:
struct vm_area_struct
struct mm_struct * vm_mm; /* 虚拟区间所在的地址空间*/
unsigned long vm_start; /* 在vm_mm中的起始地址*/
unsigned long vm_end; /*在vm_mm中的结束地址 */
/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next;
pgprot_t vm_page_prot; /* 对这个虚拟区间的存取权限 */
unsigned long vm_flags; /* 虚拟区间的标志. */
rb_node_t vm_rb;
/*
* For areas with an address space and backing store,
* one of the address_space->i_mmap{,shared} lists,
* for shm areas, the list of attaches, otherwise unused.
*/
struct vm_area_struct *vm_next_share;
struct vm_area_struct **vm_pprev_share;
/*对这个区间进行操作的函数 */
struct vm_operations_struct * vm_ops;
/* Information about our backing store: */
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
units, *not* PAGE_CACHE_SIZE */
struct file * vm_file; /* File we map to (can be NULL). */
unsigned long vm_raend; /* XXX: put full readahead info here. */
void * vm_private_data; /* was vm_pte (shared mem) */
};
vm_flag是描述对虚拟区间的操作的标志,其定义和描述如下
标志名 描述
VM_DENYWRITE 在这个区间映射一个打开后不能用来写的文件。
VM_EXEC 页可以被执行。
VM_EXECUTABLE 页含有可执行代码。
VM_GROWSDOWN 这个区间可以向低地址扩展。
VM_GROWSUP 这个区间可以向高地址扩展。
VM_IO 这个区间映射一个设备的I/O地址空间。
VM_LOCKED 页被锁住不能被交换出去。
VM_MAYEXEC VM_EXEC 标志可以被设置。
VM_MAYREAD VM_READ 标志可以被设置。
VM_MAYSHARE VM_SHARE 标志可以被设置。
VM_MAYWRITE VM_WRITE 标志可以被设置。
VM_READ 页是可读的。
VM_SHARED 页可以被多个进程共享。
VM_SHM 页用于IPC共享内存。
VM_WRITE 页是可写的。
较高层次的结构vm_area_structs是由双向链表连接起来的,它们是按虚地址的降顺序来排列的,每个这样的结构都对应描述一个相邻的地址空间范围。之所以这样分割,是因为每个虚拟区间可能来源不同,有的可能来自可执行映象,有的可能来自共享库,而有的则可能是动态分配的内存区,所以对每一个由vm_area_structs结构所描述的区间的处理操作和它前后范围的处理操作不同。因此Linux
把虚拟内存分割管理,并利用了虚拟内存处理例程(vm_ops)来抽象对不同来源虚拟内存的处理方法。不同的虚拟区间其处理操作可能不同,Linux在这里利用了面向对象的思想,即把一个虚拟区间看成一个对象,用vm_area_structs描述了这个对象的属性,其中的vm_operation结构描述了在这个对象上的操作,其定义在/include/linux/mm.h中:
/*
* These are the virtual MM functions - opening of an area, closing and
* unmapping it (needed to keep files on disk up-to-date etc), pointer
* to the functions called when a no-page or a wp-page exception occurs.
*/
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int unused);
};
vm_operations结构中包含的是函数指针;其中,open、close分别用于虚拟区间的打开、关闭,而nopage用于当虚存页面不在物理内存而引起的“缺页异常”时所应该调用的函数。
3.红黑树结构
Linux内核从2.4.10开始,对虚拟区的组织不再采用AVL树,而是采用红黑树,这也是出于效率的考虑,虽然AVL树和红黑树很类似,但在插入和删除节点方面,采用红黑树的性能更好一些,下面对红黑树给予简单介绍。
一颗红黑树是具有以下特点的二叉树:
每个节点着有颜色,或者为红,或者为黑
根节点为黑色
如果一个节点为红色,那么它的子节点必须为黑色
从一个节点到叶子节点上的所有路径都包含有相同的黑色节点数