导航:首页 > 操作系统 > linuxdtsi

linuxdtsi

发布时间:2023-06-05 12:46:41

1. 编译linux内核设备树文件使用什么命令

Linux源码的arch/powerpc/boot/dts/目录下存放了很多dts文件,可以作为参考文件。另外dtc编译器在内核源码2.6.25版本之后已经被包含进去。在2.6.26版本之后,生成blob的简单规则已经加入makefile,如下命令:
$ make ARCH=powerpc canyonlands.dtb

也可以根据自己的硬件修改好dts文件后,用下面类似命令生成dtb文件。
$ dtc -f -I dts -O dtb -R 8 -S 0x3000 test.dts > mpc836x_mds.dtb

$ mkimage -A ppc -O Linux -T flat_dt -C none -a 0x300000 -e 0 -d mpc836x_mds.dtb mpc836x_mds.dtu

2. ZYNQ+linux网口调试笔记(3)PL-ETH

在ZYNQ上使用gigE Vision协议的网络接口相机。

第一步:调通PS侧网口GEM0(Xilinx BSP默认配好)。

第二步:调通PS侧网口GEM1(见前一篇文档:开发笔记(1))。

第三步:调通PL侧网口(本文阐述)。

第四步:在PL侧网口上验证Jumbo Frame特性,并在应用层适配gigE Vision协议。

根据《xapp1082》可知,PL侧的PHY支持1000Base-X和SGMII两种配置,这两种配置对应两种不同的PHY引脚接口(连接到MAC)。而我们的hdf文件使用的是1000Base-X的配置。

关于网口的Linux驱动,我们在官网找到一份资料: Xilinx Wiki - Zynq PL Ethernet 。资料很长,我们只看与我们相关的2.4.1 PL Ethernet BSP installation for 1000Base-X”这一章节就可以了。

首先导入FPGA设计同事提供的hdf文件:

在弹出的图形界面里,进入Subsystem AUTO Hardware Settings——Ethernet Settings——Primary Ethernet,确认可以看到PL侧网络设备axi_ethernet_0,说明hdf文件里已包含了必要的网口硬件信息:

上图中被选中的网口将成为Linux上的设备eth0。这里我们默认选择ps7_ethernet_0,即使用GEM0作为首选网口。

启用Xilinx AXI Ethernet驱动

进入Device Drivers -- Network device support – 选中Xilinx AXI Ethernet(以及Xilinx Ethernet GEM,这是PS侧网口的驱动)

进入Networking support – 选中 Random ethaddr if unset

进入Device Drivers -- Network device support -- PHY Device support and infrastructure – 启用Drivers for xilinx PHYs

进入~~~~Device Drivers -- DMA Engine Support -– 禁用~~~~Xilinx AXI DMAS Engine~~~ (对应的配置项名为 ~~ CONFIG_XILINX_DMA ~~~)

注意: Xilinx Wiki里对设备树节点的引用有误(&axi_ethernet),导致编译报错,应改为&axi_ethernet_0。

注:PL-ETH驱动所在路径:<project>/build/tmp/work-shared/plnx_arm/kernel-source/drivers/net/ethernet/xilinx/xilinx_axienet_main.c和xilinx_axienet_mdio.c。对应的内核配置项为CONFIG_NET_VENDOR_XILINX和CONFIG_XILINX_AXI_EMAC。

启用ethtool和tcpmp(调试用,非必须):

然后将生成的BOOT.BIN和image.ub拷贝到SD卡根目录下,将SD卡插入板子上,上电运行。

上电后,使用ifconfig eth1查看网口信息,观察MAC地址与设置的一致,且ifconfig eth1 192.168.1.11 up没有报错。

测试网络通路:ping PC是通的。说明网口工作正常。

Linux下eth1(即PL-ETH)的MAC地址有误

问题描述:

开机打印:

注意:

MAC地址是错的,驱动里解析出的是GEM0的MAC地址。

试验发现,即使在system-user.dtsi里不写local-mac-address,也照样解析出的是GEM0的MAC。

而将system-user.dtsi里的local-mac-address改名为pl-mac-address,并将驱动里解析的字符串也对应更改为pl-mac-address,则可以正确解析出来:

Passing MAC address to kernel via Device Tree Blob and U-Boot:

http://zedboard.org/content/passing-mac-address-kernel-device-tree-blob

通过更改u-boot环境变量和设备树,为每个板子设置一个独特的MAC地址:

https://www.xilinx.com/support/answers/53476.html

U-Boot里的环境变量ethaddr会覆盖掉设备树里pl-eth的local-mac-addr字段,从而影响Linux启动后的网卡MAC地址;

但U-Boot里的环境变量ipaddr不会对Linux启动后的配置产生任何影响。因为设备树里根本就没有关于IP地址的配置。

phy-mode怎么会是sgmii?查了下官方的提供的BSP里,也是“sgmii”。说明这个没问题。具体原因不清楚。

@TODO: 设备树里的中断号的顺序如何影响功能?

为何读出来的IRQ号不对呢?这是因为这里读到的不是硬件的中断号,而是经过系统映射之后的软件IRQ number。两者不具有线性关系。

关于中断号的疑问:

Linux上的网口eth0、eth1的顺序,似乎是按照phy地址从小到大来排布的。

Xilinx xapp1082-zynq-eth.pdf (v5.0) July 16, 2018

https://www.xilinx.com/support/documentation/application_notes/xapp1082-zynq-eth.pdf

Xilinx Wiki - Zynq PL Ethernet:

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841633/Zynq+PL+Ethernet

Xilinx Wiki - Linux Drivers:

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841873/Linux+Drivers

Xilinx Wiki - Linux Drivers - Macb Driver:

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841740/Macb+Driver

Xilinx Wiki - Zynq Ethernet Performance:

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841743/Zynq+Ethernet+Performance

查到关于Jumbo frame MTU的定义,当前值为9000,可否改大一些?

驱动源码里关于jumbo frame的说明:

设置MTU为9000,发现ping包最大长度只能设为ping 192.168.1.10 -s 1472

https://lore.kernel.org/patchwork/patch/939535/

【完】

3. Linux如何及时响应外部中断

FPGA每隔100us给运行linux的ARM一个中断,要求在20us内响应中断,并读走2000*16bit的数据。
目前主要的问题是,当系统同时发生多个中断时,会严重影响linux对FPGA中断的响应时间。如何解决?

1、首先想到了ARM的FIQ,它可以打断IRQ中断服务程序,保证对外部FIQ的及时响应。但是发现linux只实现了IRQ,没有显示FIQ。
linux是从devicetree读取中断号,加入中断向量表的。

interrupts = <0x0 0x32 0x0>;中的第一个字段0表示非共享中断,非零表示共享中断,SDK产生的dts统一为0,此时第二字段的值比XPS中的小32;如果第一字段非零,则第二字段比XPS小16.
最后字段表示中断的触发方式。
IRQ_TYPE_EDGE_RISING =0x00000001,
IRQ_TYPE_EDGE_FALLING =0x00000002,
IRQ_TYPE_LEVEL_HIGH =0x00000004,
IRQ_TYPE_LEVEL_LOW =0x00000008,
很明显,devicetree根本没有提供通知linux有FIQ的渠道。
2、再来看linux的IRQ
linux的中断分为上半部和下半部,上半部运行在IRQ模式,会屏蔽所有中断,下半部运行在SVC模式,会重新打开中断。
也就是说,当一个中断的上半部正在运行时(不能再次响应中断),FPGA的中断是不能被linux响应的;
反过来,当FPGA中断的上半部正在运行时(不能再次响应中断),其他的中断也不能被linux响应;
unsigned long flags;
...
local_irq_save(flags);
....

local_irq_restore(flags);

3.
ARM有七种模式,我们这里只讨论SVC、IRQ和FIQ模式。
我们可以假设ARM核心有两根中断引脚(实际上是看不见的),一根叫 irq pin, 一根叫fiq pin.
在ARM的cpsr中,有一个I位和一个F位,分别用来禁止IRQ和FIQ的。
先不说中断控制器,只说ARM核心。正常情况下,ARM核都只是机械地随着pc的指示去做事情,当CPSR中的I和F位为1的时候,IRQ和FIQ全部处于禁止状态。无论你在irq
pin和fiq pin上面发什么样的中断信号,ARM是不会理你的,你根本不能打断他,因为他耳聋了,眼也瞎了。
在I位和F位为0的时候,当irq
pin上有中断信号过来的时候,就会打断arm的当前工作,并且切换到IRQ模式下,并且跳到相应的异常向量表(vector)位置去执行代码。这个过程是自动的,但是返回到被中断打断的地方就得您亲自动手了。当你跳到异常向量表,处于IRQ的模式的时候,这个时候如果irq
pin上面又来中断信号了,这个时候ARM不会理你的,irq
pin就跟秘书一样,ARM核心就像老板,老板本来在做事,结果来了一个客户,秘书打断它,让客户进去了。而这个时候再来一个客户,要么秘书不断去敲门问,要么客户走人。老板第一个客户没有会见完,是不会理你的。
但是有一种情况例外,当ARM处在IRQ模式,这个时候fiq pin来了一个中断信号,fiq
pin是什么?是快速中断呀,比如是公安局的来查刑事案件,那才不管你老板是不是在会见客户,直接打断,进入到fiq模式下,并且跳到相应的fiq的异常向量表处去执行代码。那如果当ARM处理FIQ模式,fiq
pin又来中断信号,又就是又一批公安来了,那没戏,都是执法人员,你打不断我。那如果这个时候irq
pin来了呢?来了也不理呀,正在办案,还敢来妨碍公务。
所以得出一个结论: IRQ模式只能被FIQ模式打断,FIQ模式下谁也打不断。
在打不断的情况下,irq pin 或 fiq pin随便你怎么发中断信号,都是白发。
所以除了fiq能打断irq以外,根本没有所谓中断嵌套的情况。
Linux不用FIQ,只用到了IRQ。但是我们有时候一个中断需要处理很长时间,那我们就需要占用IRQ模式那么长的时间吗?没有,linux在IRQ模式下只是简单的记录是什么中断,马上就切换回了SVC模式,换句话说,Linux的中断处理都是在SVC模式下处理的。
只不过SVC模式下的ISR上半部关闭了当前中断线,下半部才重新打开

4. Linux内核中断之获取中断号

Linux内核中可使用 platform_get_irq() 函数获取 dts 文件中设置的中断号。

函数原型: int platform_get_irq(struct platform_device *dev, unsigned int num)

定义文件: driversaseplatform.c

中断号获取函数 platform_get_irq() 调用流程如下:

rk3399 使用的是 GICv3 ,对应 irq_domain->name 。

文件: drivers/irqchip/irq-gic-v3.c 。

translate() 函数实现如下:

以 RockPI 4A 单板 Debian 系统Linux 4.4内核中的获取 HDMI 中断号为例。

1、查找中断号

从手册“Rockchip RK3399 TRM V1.3 Part1.pdf”中,可以查到 HDMI_IRQ 中断号,即55。

2、 dts 配置

文件: arch/arm64/boot/dts/rockchip/rk3399.dtsi

hdmi 使用的是 GIC_SPI 中断,按照 gic_irq_domain_translate() 函数中处理,需要将中断号55减去32,得到 dts 中的中断号23。

注: interrupts = <中断类型 中断号 中断触发类型 中断分区(对应哪个CPU cluster,PPI类型中断特有)>

3、驱动函数

文件: driversgpudrm ockchipdw_hdmi-rockchip.c

此时, irq 返回值为55。

后续会介绍 GIC 和中断注册等实现函数。

5. Linux内核dvfs之cpufreq配置

本文基于 RockPi 4A 单板 Linux4.4 内核介绍 OPP Table 。

内核中将频咐游率、电压的相关配置放在 DTSI 文件中,这些配置信息组成的节点被称为物简迟 OPP Table(Operating Performance Points) 。

定义文件: arch/arm64/boot/dts/rockchip/rk3399-opp.dtsi ,内容如下:

上面节点中的相关属性含义如下:

1、 opp-shared :表示 opp-table1 是小核的各 CPU 共用。

2、 rockchip,temp-hysteresis :迟滞参数,防止频繁进入高温或低温,单位:毫摄氏度。

3、 rockchip,low-temp :低温阈值。小于该值时,进入低温,大于‘该值+迟滞参数’时,恢复常温。

4、 rockchip,low-temp-min-volt :低温下最低电压,单位:微伏。

5、 nvmem-cells :从 eFUSE 中读取相关信息值(小核漏电流)。

6、 rockchip,pvtm-voltage-sel :min-pvtm(单位KHz)、max-pvtm(单位KHz)和 voltage-selector (用于匹配 opp 节点中 opp-microvolt-L* 属性的序列号)。例:pvtm值为:0 ~ 143500 使用 opp-microvolt-L0 ,143501 ~ 148500使用 opp-microvolt-L1

7、 rockchip,pvtm-freq :时钟频率(KHz),在获取 pvtm 的频率前,先设置 CPU 频率。

8、 rockchip,pvtm-volt :电压(微伏),在获取 pvtm 的频率前,先设置 CPU 电压。

9、 rockchip,pvtm-ch : PVTM 通道,格式<通道号 sel的序号>

10、 rockchip,pvtm-sample-time : PVTM 采样时间,单位:毫秒。

11、 rockchip,pvtm-number : PVTM 采样个数。

12、 rockchip,pvtm-error :允许采样数据之间的误差。

13、 rockchip,pvtm-ref-temp :参考温度。

14、 rockchip,pvtm-temp-prop : PVTM 随温度变化的比例系数,格式<小于参考温度的比例系数 大于参考温度的比例系数>。

15、 rockchip,thermal-zone :获取温度的 thermal-zone 。

16、 opp-microvolt-L* :电压(微伏),格式<target min max>

17、 clock-latency-ns :完成变频需要的时间,单位:纳秒。

在 RK3399 中,除了配置上述小核的 opp table 外,还设置了大核( cluster1_opp )、 gpu(gpu_opp_table) 等的相关值。查看命令如下:

注:

CPU PVTM(Process Voltage Temperature Monitor) 是一个位于 CPU 附近,能罩李反应出不同芯片之间性能差异的模块,受工艺,电压和温度 的影响。

参考:

Documentation/devicetree/bindings/cpufreq/cpufreq-rockchip.txt

Documentation/devicetree/bindings/cpufreq/cpufreq-rockchip.txt

阅读全文

与linuxdtsi相关的资料

热点内容
时间算法与现在有什么区别 浏览:160
7zip解压后没文件夹 浏览:900
为什么安卓送玫瑰ios收不到 浏览:6
美篇文章加密是什么意思 浏览:80
ilasm编译dll 浏览:36
呼吸灯单片机程序 浏览:950
linux域socket 浏览:246
qq分身怎么样才能加密 浏览:453
windows打开linux 浏览:995
新建文件夹为什么不能发送微信 浏览:600
交警app怎么绑定本人几辆车 浏览:985
彩虹六号如何人工服务器 浏览:632
mc服务器地址怎么登入 浏览:556
苹果app怎么扫描二维码下载 浏览:961
css文件在线解压 浏览:156
36岁程序员近况 浏览:285
哪里可以下载不加密的歌 浏览:936
隐藏文件夹是什么梗 浏览:920
插件注册命令 浏览:498
梁一端加密一端不加密规范 浏览:84