㈠ linux unmount使丢失数据吗
把 SSD 转为 GPT 模式与机械硬盘无关。 但是,将带有系统的 MBR 磁盘转为 GPT 磁盘,虽然是无损转换,但系统将无法启动。因为: 1、只有能够启用 UEFI BIOS 的新型主板,才能够在 GPT 磁盘上安装系统,且只能安装64位系统。 2、GPT 磁盘上的系统...
㈡ oraclelinux没有unmount命令,如何取消挂载
/bin/umount,不是unmount
㈢ Ubuntu编译了新的内核,进入新内核时一直显示载入Linux 5.6.7,载入初始化内存盘咋回事
概述====1)当内核配置了内存盘时, 内核在初始化时可以将软盘加载到内存盘中作为根盘.当同时配置了初始化内存盘(Initail RAM Disk)时, 内核在初始化时可以在安装主盘之前,通过引导程序所加载的initrd文件建立一个内存初始化盘, 首先将它安装成根文件系统, 然后执行其根目录下的linuxrc 文件,可用于在安装主盘之前加载一些内核模块. 等到linuxrc 程序退出后, 再将主盘安装成根文件系统,并将内存初始化盘转移安装到其/initrd目录下.2)当主盘就是initrd所生成的内存初始化盘时, 不再进行重新安装,在DOS下用loadlin加载的抢救盘就是这种工作方式.3)引导程序所加载的initrd为文件系统的映象文件, 可以是gzip压缩的, 也可以是不压缩的.能够识别的文件系统有minix,ext2,romfs三种.4)当内核的根盘为软盘时,内核初始化时会测试软盘的指定部位是否存在文件系统或压缩文件映象, 然后将之加载或解压到内存盘中作为根盘. 这是单张抢救软盘的工作方式.有关代码========; init/main.c#ifdef CONFIG_BLK_DEV_INITRDkdev_t real_root_dev; 启动参数所设定的根盘设备#endifasmlinkage void __init start_kernel(void){ char * command_line; unsigned long mempages; extern char saved_command_line[]; lock_kernel(); printk(linux_banner); setup_arch(&command_line);arch/i386/kernel/setup.c中,初始化initrd_start和initrd_end两个变量 ...#ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && !initrd_below_start_ok && initrd_start < min_low_pfn << PAGE_SHIFT) { ; min_low_pfn为内核末端_end所开始的物理页号,initrd_start,initrd_end在rd.c中定义 printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - " "disabling it./n",initrd_start,min_low_pfn << PAGE_SHIFT); initrd_start = 0; }#endif ... kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); 创建init进程 unlock_kernel(); current->need_resched = 1; cpu_idle();}static int init(void * unused){ lock_kernel(); do_basic_setup(); /* * Ok, we have completed the initial bootup, and * we're essentially up and running. Get rid of the * initmem segments and start the user-mode stuff.. */ free_initmem(); unlock_kernel(); if (open("/dev/console", O_RDWR, 0) < 0) printk("Warning: unable to open an initial console./n"); (void) p(0); (void) p(0); /* * We try each of these until one succeeds. * * The Bourne shell can be used instead of init if we are * trying to recover a really broken machine. */ if (execute_command) execve(execute_command,argv_init,envp_init); execve("/sbin/init",argv_init,envp_init); execve("/etc/init",argv_init,envp_init); execve("/bin/init",argv_init,envp_init); execve("/bin/sh",argv_init,envp_init); panic("No init found. Try passing init= option to kernel.");}static void __init do_basic_setup(void){#ifdef CONFIG_BLK_DEV_INITRD int real_root_mountflags;#endif ...#ifdef CONFIG_BLK_DEV_INITRD real_root_dev = ROOT_DEV; ROOT_DEV为所请求根文件系统的块设备 real_root_mountflags = root_mountflags; if (initrd_start && mount_initrd) root_mountflags &= ~MS_RDONLY; else mount_initrd =0; #endif start_context_thread(); do_initcalls(); 会调用partition_setup()中加载内存盘 /* .. filesystems .. */ filesystem_setup(); /* Mount the root filesystem.. */ mount_root(); mount_devfs_fs ();#ifdef CONFIG_BLK_DEV_INITRD root_mountflags = real_root_mountflags; if (mount_initrd && ROOT_DEV != real_root_dev && MAJOR(ROOT_DEV) == RAMDISK_MAJOR && MINOR(ROOT_DEV) == 0) { ; 如果当前根盘为initrd所建立的内存盘 int error; int i, pid; pid = kernel_thread(do_linuxrc, "/linuxrc", SIGCHLD); 创建新的任务去执行程序/linuxrc if (pid>0) while (pid != wait(&i)); 等待linuxrc进程退出 if (MAJOR(real_root_dev) != RAMDISK_MAJOR || MINOR(real_root_dev) != 0) { ; 如果原来的根盘不是0号内存盘,则使用原来的根文件系统, ; 并且将内存盘转移到其/initrd目录下 error = change_root(real_root_dev,"/initrd"); if (error) printk(KERN_ERR "Change root to /initrd: " "error %d/n",error); } }#endif}#ifdef CONFIG_BLK_DEV_INITRDstatic int do_linuxrc(void * shell){ static char *argv[] = { "linuxrc", NULL, }; close(0);close(1);close(2); setsid(); 设置新的session号 (void) open("/dev/console",O_RDWR,0); (void) p(0); (void) p(0); return execve(shell, argv, envp_init);}#endif; arch/i386/kernel/setup.c#define RAMDISK_IMAGE_START_MASK 0x07FF#define RAMDISK_PROMPT_FLAG 0x8000#define RAMDISK_LOAD_FLAG 0x4000 #define PARAM ((unsigned char *)empty_zero_page)#define RAMDISK_FLAGS (*(unsigned short *) (PARAM+0x1F8)) 可用rdev设置的参数#define LOADER_TYPE (*(unsigned char *) (PARAM+0x210))#define INITRD_START (*(unsigned long *) (PARAM+0x218)) 初始化盘映象起始物理地址#define INITRD_SIZE (*(unsigned long *) (PARAM+0x21c)) 初始化盘字节数void __init setup_arch(char **cmdline_p){ ...#ifdef CONFIG_BLK_DEV_RAM rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 以块为单位 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);#endif ...#ifdef CONFIG_BLK_DEV_INITRD if (LOADER_TYPE && INITRD_START) { if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { ; max_low_pfn表示内核空间1G范围以下最大允许的物理页号 reserve_bootmem(INITRD_START, INITRD_SIZE); initrd_start = INITRD_START ? INITRD_START + PAGE_OFFSET : 0; 转变为内核逻辑地址 initrd_end = initrd_start+INITRD_SIZE; } else { printk("initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)/ndisabling initrd/n", INITRD_START + INITRD_SIZE, max_low_pfn << PAGE_SHIFT); initrd_start = 0; } }#endif ...}; fs/partitions/check.c:int __init partition_setup(void){ device_init(); 包含ramdisk设备的初始化#ifdef CONFIG_BLK_DEV_RAM#ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && mount_initrd) initrd_load(); ;如果启动时加载了initrd文件,则用它去初始化根内存盘 else#endif rd_load(); 如果内核配置了内存盘并且根盘指定为软盘则试图将软盘加载为根内存盘#endif return 0;}__initcall(partition_setup);; drivers/block/rd.c:int rd_doload; /* 1 = load RAM disk, 0 = don't load */int rd_prompt = 1; /* 1 = prompt for RAM disk, 0 = don't prompt */int rd_image_start; /* starting block # of image */#ifdef CONFIG_BLK_DEV_INITRDunsigned long initrd_start, initrd_end;int mount_initrd = 1; /* zero if initrd should not be mounted */int initrd_below_start_ok;void __init rd_load(void){ rd_load_disk(0); 加载到0号内存盘}void __init rd_load_secondary(void){ rd_load_disk(1); 加载到1号内存盘}static void __init rd_load_disk(int n){#ifdef CONFIG_BLK_DEV_INITRD extern kdev_t real_root_dev;#endif if (rd_doload == 0) return; if (MAJOR(ROOT_DEV) != FLOPPY_MAJOR 如果根盘是不软盘#ifdef CONFIG_BLK_DEV_INITRD && MAJOR(real_root_dev) != FLOPPY_MAJOR#endif ) return; if (rd_prompt) {#ifdef CONFIG_BLK_DEV_FD floppy_eject();#endif#ifdef CONFIG_MAC_FLOPPY if(MAJOR(ROOT_DEV) == FLOPPY_MAJOR) swim3_fd_eject(MINOR(ROOT_DEV)); else if(MAJOR(real_root_dev) == FLOPPY_MAJOR) swim3_fd_eject(MINOR(real_root_dev));#endif printk(KERN_NOTICE "VFS: Insert root floppy disk to be loaded into RAM disk and press ENTER/n"); wait_for_keypress(); } rd_load_image(ROOT_DEV,rd_image_start, n); 将根软盘加载到n号内存盘}void __init initrd_load(void){ ; 使用initrd设备盘作为源盘去建立内存根盘 rd_load_image(MKDEV(MAJOR_NR, INITRD_MINOR),rd_image_start,0);}static void __init rd_load_image(kdev_t device, int offset, int unit){ struct inode *inode, *out_inode; struct file infile, outfile; struct dentry in_dentry, out_dentry; mm_segment_t fs; kdev_t ram_device; int nblocks, i; char *buf; unsigned short rotate = 0; unsigned short devblocks = 0; char rotator[4] = { '|' , '/' , '-' , '//' }; ram_device = MKDEV(MAJOR_NR, unit); 建立输出内存盘设备号 if ((inode = get_empty_inode()) == NULL) return; memset(&infile, 0, sizeof(infile)); memset(&in_dentry, 0, sizeof(in_dentry)); infile.f_mode = 1; /* read only */ infile.f_dentry = &in_dentry; in_dentry.d_inode = inode; infile.f_op = &def_blk_fops; init_special_inode(inode, S_IFBLK | S_IRUSR, kdev_t_to_nr(device)); if ((out_inode = get_empty_inode()) == NULL) goto free_inode; memset(&outfile, 0, sizeof(outfile)); memset(&out_dentry, 0, sizeof(out_dentry)); outfile.f_mode = 3; /* read/write */ outfile.f_dentry = &out_dentry; out_dentry.d_inode = out_inode; outfile.f_op = &def_blk_fops; init_special_inode(out_inode, S_IFBLK | S_IRUSR | S_IWUSR, kdev_t_to_nr(ram_device)); if (blkdev_open(inode, &infile) != 0) 打开输入盘文件 goto free_inode; if (blkdev_open(out_inode, &outfile) != 0) 打开输出内存盘文件 goto free_inodes; fs = get_fs(); set_fs(KERNEL_DS); nblocks = identify_ramdisk_image(device, &infile, offset); 鉴定输入盘的文件类型 if (nblocks < 0) 出错 goto done; if (nblocks == 0) { 表示输入盘是gzip文件#ifdef BUILD_CRAMDISK if (crd_load(&infile, &outfile) == 0) 将输入盘文件解压到输出盘文件中去 goto successful_load;#else printk(KERN_NOTICE "RAMDISK: Kernel does not support compressed " "RAM disk images/n");#endif goto done; } /* * NOTE NOTE: nblocks suppose that the blocksize is BLOCK_SIZE, so * rd_load_image will work only with filesystem BLOCK_SIZE wide! * So make sure to use 1k blocksize while generating ext2fs * ramdisk-images. */ if (nblocks > (rd_length[unit] >> BLOCK_SIZE_BITS)) { ; 如果输入盘的尺寸超过了输出内存盘的允许尺寸 printk("RAMDISK: image too big! (%d/%ld blocks)/n", nblocks, rd_length[unit] >> BLOCK_SIZE_BITS); goto done; } /* * OK, time to in the data */ buf = kmalloc(BLOCK_SIZE, GFP_KERNEL); if (buf == 0) { printk(KERN_ERR "RAMDISK: could not allocate buffer/n"); goto done; } if (blk_size[MAJOR(device)]) devblocks = blk_size[MAJOR(device)][MINOR(device)]; 取输入盘的容量#ifdef CONFIG_BLK_DEV_INITRD if (MAJOR(device) == MAJOR_NR && MINOR(device) == INITRD_MINOR) devblocks = nblocks; 如果输入是初始化内存盘,则盘的容量为它的实际尺寸#endif if (devblocks == 0) { printk(KERN_ERR "RAMDISK: could not determine device size/n"); goto done; } printk(KERN_NOTICE "RAMDISK: Loading %d blocks [%d disk%s] into ram disk... ", nblocks, ((nblocks-1)/devblocks)+1, nblocks>devblocks ? "s" : ""); for (i=0; i < nblocks; i++) { if (i && (i % devblocks == 0)) { printk("done disk #%d./n", i/devblocks); rotate = 0; invalidate_buffers(device); 使输入盘设备缓冲区无效 if (infile.f_op->release) infile.f_op->release(inode, &infile); printk("Please insert disk #%d and press ENTER/n", i/devblocks+1); wait_for_keypress(); if (blkdev_open(inode, &infile) != 0) { printk("Error opening disk./n"); goto done; } infile.f_pos = 0; printk("Loading disk #%d... ", i/devblocks+1); } infile.f_op->read(&infile, buf, BLOCK_SIZE, &infile.f_pos); outfile.f_op->write(&outfile, buf, BLOCK_SIZE, &outfile.f_pos);#if !defined(CONFIG_ARCH_S390) if (!(i % 16)) { printk("%c/b", rotator[rotate & 0x3]); rotate++; }#endif } printk("done./n"); kfree(buf);successful_load: invalidate_buffers(device); ROOT_DEV = MKDEV(MAJOR_NR, unit); 将根盘设备设置为当前加载的内存盘 if (ROOT_DEVICE_NAME != NULL) strcpy (ROOT_DEVICE_NAME, "rd/0");done: if (infile.f_op->release) infile.f_op->release(inode, &infile); set_fs(fs); return;free_inodes: /* free inodes on error */ iput(out_inode); blkdev_put(inode->i_bdev, BDEV_FILE);free_inode: iput(inode);}int __init identify_ramdisk_image(kdev_t device, struct file *fp, int start_block){ const int size = 512; struct minix_super_block *minixsb; struct ext2_super_block *ext2sb; struct romfs_super_block *romfsb; int nblocks = -1; unsigned char *buf; buf = kmalloc(size, GFP_KERNEL); if (buf == 0) return -1; minixsb = (struct minix_super_block *) buf; ext2sb = (struct ext2_super_block *) buf; romfsb = (struct romfs_super_block *) buf; memset(buf, 0xe5, size); /* * Read block 0 to test for gzipped kernel */ if (fp->f_op->llseek) fp->f_op->llseek(fp, start_block * BLOCK_SIZE, 0); fp->f_pos = start_block * BLOCK_SIZE; fp->f_op->read(fp, buf, size, &fp->f_pos); ; 读取offset开始的512字节 /* * If it matches the gzip magic numbers, return -1 */ if (buf[0] == 037 && ((buf[1] == 0213) || (buf[1] == 0236))) { printk(KERN_NOTICE "RAMDISK: Compressed image found at block %d/n", start_block); nblocks = 0; goto done; } /* romfs is at block zero too */ if (romfsb->word0 == ROMSB_WORD0 && romfsb->word1 == ROMSB_WORD1) { printk(KERN_NOTICE "RAMDISK: romfs filesystem found at block %d/n", start_block); nblocks = (ntohl(romfsb->size)+BLOCK_SIZE-1)>>BLOCK_SIZE_BITS; goto done; } /* * Read block 1 to test for minix and ext2 superblock */ if (fp->f_op->llseek) fp->f_op->llseek(fp, (start_block+1) * BLOCK_SIZE, 0); fp->f_pos = (start_block+1) * BLOCK_SIZE; fp->f_op->read(fp, buf, size, &fp->f_pos); /* Try minix */ if (minixsb->s_magic == MINIX_SUPER_MAGIC || minixsb->s_magic == MINIX_SUPER_MAGIC2) { printk(KERN_NOTICE "RAMDISK: Minix filesystem found at block %d/n", start_block); nblocks = minixsb->s_nzones << minixsb->s_log_zone_size; goto done; } /* Try ext2 */ if (ext2sb->s_magic == cpu_to_le16(EXT2_SUPER_MAGIC)) { printk(KERN_NOTICE "RAMDISK: ext2 filesystem found at block %d/n", start_block); nblocks = le32_to_cpu(ext2sb->s_blocks_count); goto done; } printk(KERN_NOTICE "RAMDISK: Couldn't find valid RAM disk image starting at %d./n", start_block);done: if (fp->f_op->llseek) fp->f_op->llseek(fp, start_block * BLOCK_SIZE, 0); fp->f_pos = start_block * BLOCK_SIZE; kfree(buf); return nblocks;}; fs/super.cvoid __init mount_root(void){ struct file_system_type * fs_type; struct super_block * sb; struct vfsmount *vfsmnt; struct block_device *bdev = NULL; mode_t mode; int retval; void *handle; char path[64]; int path_start = -1;#ifdef CONFIG_BLK_DEV_FD if (MAJOR(ROOT_DEV) == FLOPPY_MAJOR) { 当根盘还是软盘,表示没有加载过内存盘#ifdef CONFIG_BLK_DEV_RAM extern int rd_doload; extern void rd_load_secondary(void);#endif floppy_eject();#ifndef CONFIG_BLK_DEV_RAM printk(KERN_NOTICE "(Warning, this kernel has no ramdisk support)/n");#else /* rd_doload is 2 for a al initrd/ramload setup */ ; 只有当加载了initrd但没有释放到内存盘中(mount_inird=0)才有可能到这一步 if(rd_doload==2) rd_load_secondary(); 加载另一张软盘到1号内存盘作为根盘 else#endif { printk(KERN_NOTICE "VFS: Insert root floppy and press ENTER/n"); wait_for_keypress(); } }#endif devfs_make_root (root_device_name); handle = devfs_find_handle (NULL, ROOT_DEVICE_NAME, MAJOR (ROOT_DEV), MINOR (ROOT_DEV), DEVFS_SPECIAL_BLK, 1); if (handle) /* Sigh: bd*() functions only paper over the cracks */ { unsigned major, minor; devfs_get_maj_min (handle, &major, &minor); ROOT_DEV = MKDEV (major, minor); } /* * Probably pure paranoia, but I'm less than happy about delving into * devfs crap and checking it right now. Later. */ if (!ROOT_DEV) panic("I have no root and I want to scream"); bdev = bdget(kdev_t_to_nr(ROOT_DEV)); if (!bdev) panic(__FUNCTION__ ": unable to allocate root device"); bdev->bd_op = devfs_get_ops (handle); path_start = devfs_generate_path (handle, path + 5, sizeof (path) - 5); mode = FMODE_READ; if (!(root_mountflags & MS_RDONLY)) mode |= FMODE_WRITE; retval = blkdev_get(bdev, mode, 0, BDEV_FS); if (retval == -EROFS) { root_mountflags |= MS_RDONLY; retval = blkdev_get(bdev, FMODE_READ, 0, BDEV_FS); } if (retval) { /* * Allow the user to distinguish between failed open * and bad superblock on root device. */ printk ("VFS: Cannot open root device /"%s/" or %s/n", root_device_name, kdevname (ROOT_DEV)); printk ("Please append a correct /"root=/" boot option/n"); panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV)); } check_disk_change(ROOT_DEV); sb = get_super(ROOT_DEV); 取根盘的超级块 if (sb) { fs_type = sb->s_type; goto mount_it; } read_lock(&file_systems_lock); for (fs_type = file_systems ; fs_type ; fs_type = fs_type->next) { if (!(fs_type->fs_flags & FS_REQUIRES_DEV)) continue; 根文件系统必须依赖于块设备 if (!try_inc_mod_count(fs_type->owner)) continue; 当文件系统模块正在删除过程中 read_unlock(&file_systems_lock); sb = read_super(ROOT_DEV,bdev,fs_type,root_mountflags,NULL,1);建立根盘的超级块结构 if (sb) goto mount_it; read_lock(&file_systems_lock); put_filesystem(fs_type); 释放对文件系统模块的引用 } read_unlock(&file_systems_lock); panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV));mount_it: printk ("VFS: Mounted root (%s filesystem)%s./n", fs_type->name, (sb->s_flags & MS_RDONLY) ? " readonly" : ""); if (path_start >= 0) { devfs_mk_symlink (NULL, "root", DEVFS_FL_DEFAULT, path + 5 + path_start, NULL, NULL); memcpy (path + path_start, "/dev/", 5); vfsmnt = add_vfsmnt(NULL, sb->s_root, path + path_start); } else vfsmnt = add_vfsmnt(NULL, sb->s_root, "/dev/root"); 建立根盘的安装结构 /* FIXME: if something will try to umount us right now... */ if (vfsmnt) { set_fs_root(current->fs, vfsmnt, sb->s_root); 设置当前进程的根盘和根目录 set_fs_pwd(current->fs, vfsmnt, sb->s_root); 设置当前进程的当前盘和当前目录 if (bdev) bdput(bdev); /* sb holds a reference */ return; } panic("VFS: add_vfsmnt failed for root fs");}#ifdef CONFIG_BLK_DEV_INITRDint __init change_root(kdev_t new_root_dev,const char *put_old){ 以new_root_dev作为根盘重新安装根文件系统,原来的根转移到put_old目录下 struct vfsmount *old_rootmnt; struct nameidata devfs_nd, nd; int error = 0; read_lock(¤t->fs->lock); old_rootmnt = mntget(current->fs->rootmnt); 取当前进程的根盘安装结构 read_unlock(¤t->fs->lock); /* First unmount devfs if mounted */ if (path_init("/dev", LOOKUP_FOLLOW|LOOKUP_POSITIVE, &devfs_nd)) error = path_walk("/dev", &devfs_nd); if (!error) { if (devfs_nd.mnt->mnt_sb->s_magic == DEVFS_SUPER_MAGIC && devfs_nd.dentry == devfs_nd.mnt->mnt_root) { dput(devfs_nd.dentry); down(&mount_sem); /* puts devfs_nd.mnt */ do_umount(devfs_nd.mnt, 0, 0); up(&mount_sem); } else path_release(&devfs_nd); } ROOT_DEV = new_root_dev; mount_root(); 改变根盘设备重新安装根文件系统#if 1 shrink_dcache(); 清除目录项缓冲中所有自由的目录项 printk("change_root: old root has d_count=%d/n", atomic_read(&old_rootmnt->mnt_root->d_count));#endif mount_devfs_fs (); /* * Get the new mount directory */ error = 0; if (path_init(put_old, LOOKUP_FOLLOW|LOOKUP_POSITIVE|LOOKUP_DIRECTORY, &nd)) error = path_walk(put_old, &nd); 在新的根盘中寻找put_old目录 if (error) { int blivet; printk(KERN_NOTICE "Trying to unmount old root ... "); blivet = do_umount(old_rootmnt, 1, 0); 卸载原始的根盘 if (!blivet) { printk("okay/n"); return 0; } printk(KERN_ERR "error %d/n", blivet); return error; } /* FIXME: we should hold i_zombie on nd.dentry */ move_vfsmnt(old_rootmnt, nd.dentry, nd.mnt, "/dev/root.old"); mntput(old_rootmnt); path_release(&nd); return 0;}#endifstatic struct vfsmount *add_vfsmnt(struct nameidata *nd, 在虚拟文件系统中的安装点 struct dentry *root, 安装盘的根目录项 const char *dev_name) 安装盘名称{ struct vfsmount *mnt;
————————————————
版权声明:本文为CSDN博主“huanghaibin”的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/huanghaibin/java/article/details/478215
㈣ Linux命令diskutil的unmount和eject的区别是什么
eject:退出可抽取式设备,这当然包括所有可热插拔的设备如scsi硬盘。若设备已挂入,则eject会先将该设备卸除再退出。
umount:是mount的反操作,这个是系统的强制操作,因为使用umount命令可以卸载文件系统。
㈤ linux下所谓的挂载是什么意思请给一个很详细的回答。谢谢
挂载的含义:一般,挂载是指linux系统挂载一个iso文件到系统中,然后自动概念。这个概念值得是在开机的时候系统自动将一些工作做完。
一、自动挂载如何实现
1、查看系统开机启动文件是哪个(不同的系统,启动文件位置不同)
2、写一个shell脚本,给这个脚本root权限,然后将这个shell脚本历经添加到步骤1中的开机文件中去,这样系统开机就会执行你的shll脚本
3、脚本中应该做什么事:该脚本应该找到你的iso文件位置,然后使用mount命令将该文件mount到指定目录(挂载).
二、挂载中应该注意的问题有
1、挂载点必须是一个目录。
2、一个分区挂载在一个已存在的目录上,这个目录可以不为空,但挂载后这个目录下以前的内容将不可用。对于其他操作系统建立的文件系统的挂载也是这样。
挂载命令
1、挂载时使用mount命令:
2、格式:mount [-参数] [设备名称] [挂载点]
3、其中常用的参数有:
(1)-t<文件系统类型> 指定设备的文件系统类型,
(2)常见的有: minix linux最早使用的文件系统
4、ext2 linux目前常用的文件系统:
(1)msdosMS-DOS的fat,就是fat16
(2)vfat windows98常用的fat32
(3)nfs网络文件系统
资料来源:网络—挂载
㈥ linux下mount一个非空目录,原目录内容是如何被隐藏的,当unmount时原目录是如何建立与内容的关联关系的呢
被盖上了而已。
mount 之后,系统遇到这个目录的访问,就自动转换到新的文件系统上了。
㈦ linux下如何安全弹出USB接口设备
可以用umonut卸载USB。
代码如下:
umount /mnt/usb。
linux下挂哪笑载USB的方法如下:
假设U盘挂载到/mnt/usb目录(没有的话,新建)中,就是mount -t msdos /dev/sdb1 /mnt/usb
如果是fat32:
㈧ Linux里面文件挂载点是什么
1.提一句Windows下,mount挂载,就是给磁盘分区提供一个盘符(C,D,E,...)。比如插入U盘后系统自动分配给了它I:盘符其实就是挂载,退优盘的时候进行安全弹出,其实就是卸载unmount。
2.Linux下,不像Windows可以有C,D,E,多个目录,Linux只有一个根目录/。在装系统时,我们分配给linux的所有区都在/下的某个位置,比如/home等等。
3.提问者插入了新硬盘,分了新磁盘区sdb1。它现在还不属于/。
4.我们虽然可以在一些图形桌面系统里找到他的位置,浏览管理里面的文件,但在命令行却不知怎么访问它的目录,比如无法使用cd或者ls。也无法在编程时指定一个目录对它操作。
5.这时提问者使用了 mount /dev/sdb1 ~/Share/ ,把新硬盘的区sdb1挂载到工作目录的~/Share/文件夹下,之后访问这个~/Share/文件夹就相当于访问这个硬盘2的sdb1分区了。对/Share/的任何操作,都相当于对sdb1里文件的操作。
6.所以Linux下,mount挂载的作用,就是将一个设备(通常是存储设备)挂接到一个已存在的目录上。访问这个目录就是访问该存储设备。
7.linux操作系统将所有的设备都看作文件,它将整个计算机的资源都整合成一个大的文件目录。我们要访问存储设备中的文件,必须将文件所在的分区挂载到一个已存在的目录上,然后通过访问这个目录来访问存储设备。挂载就是把设备放在一个目录下,让系统知道怎么管理这个设备里的文件,了解这个存储设备的可读写特性之类的过程。
8.我们不是有/dev/sdb1 吗,直接对它操作不就行了?这不是它的目录吗?
9.这不是它的目录。虽然/dev是个目录,但/dev/sdb1不是目录。可以发现ls/dev/sdb1无法执行。/dev/sdb1,是一个类似指针的东西,指向这个分区的原始数据块。mount前,系统并不知道这个数据块哪部分数据代表文件,如何对它们操作。
10.插入CD,系统其实自动执行了 mount /dev/cdrom /media/cdrom。所以可以直接在/media/cdrom中对CD中的内容进行管理。