① android中相同分辨率不同尺寸的手机怎么适配
Android应用如何适配不同分辨率的手机
主要分三块考虑
1 )界面配置
根据不同的分辨率,创建手机界面文件
例子:
在res下创建 layout-800x480
layout-480x320
并在各自不同分辨率的文件夹下创建界面文件
2)图片配置
不同的分辨率,界面的长宽比不一致,需要不同规格的图片
在drawable-hdpi,drawable-ldpi,drawable-mdpi 中放不同分辨率的图片
注:为了减小整个应用程序安装包大小,选用最高分辨率适配,特殊界面图片特殊处理
3)动态实现的界面,样式的设定
不同分辨率,界面的字体大小,字体等需要不同的样式,且需要动态生成的情况下,
需要把不同分辨率的配置信息保存到应用中。
例子:
在RES里创建 values-480x320 values-800x400 value-1280x720
并在创建的文件夹中分别创建dimens.xml
<dimen name="Text_size">30px</dimen>
在程序中直接调用R.dimen.Text_size
int sizeOfText = (int) this.getResources().getDimension(R.dimen.Text_size);
注:实际应用发现,字体大小适配时
比如只适配了如下屏幕字体
values-480x320 values-800x480 value-1280x720
当出现手机屏幕分辨率为 854x480时会自动找最大字体适配 (value-1280x720)
总结:如果字体800x480以上没有适配,手机自动按最大分辨率适配.
② Android-屏幕适配全攻略(绝对详细)(一)
关键字: 屏幕适配 px dp dpi sp large限定符 .9.png
前言: 这篇文章依然是我在 [慕课网 ][h]学习 凯子哥 的同名视频 Android-屏幕适配全攻略 ,所记录下来的笔记---凯子哥讲得真的超详细。
[h]: http://www.imooc.com/ "MOOC"
从上图可以看出,主流的分辨率是前六种:1280×720、1920×1080、800×480、854×480、960×540、1184×720,不过我们有解决方案。看完这篇文章,想必你就可以解决常见的屏幕适配问题。
接下来正式进入正题。
介绍几个在Android屏幕适配上非常重要的名词:
屏幕尺寸 是指屏幕对角线的长度。单位是英寸,1英寸=2.54厘米
屏幕分辨率 是指在横纵向上的像素点数,单位是px,1px=1像素点,一般是纵向像素横向像素,如1280×720
屏幕像素密度 是指每英寸上的像素点数,单位是dpi,即“dot per inch”的缩写,像素密度和屏幕尺寸和屏幕分辨率有关
dip: Density Independent Pixels(密度无关像素)的缩写。以 160dpi 为基准,1dp=1px
dp: 同 dip
dpi: 屏幕像素密度的单位,“dot per inch”的缩写
px: 像素,物理上的绝对单位
sp: Scale-Independent Pixels的缩写,可以根据文字大小首选项自动进行缩放。Google推荐我们使用12sp以上的大小,通常可以使用12sp,14sp,18sp,22sp,最好不要使用奇数和小数。
用于区分不同的像素密度。
在Google官方开发文档中,说明了 ** mdpi:hdpi:xhdpi:xxhdpi:xxxhdpi=2:3:4:6:8 ** 的尺寸比例进行缩放。例如,一个图标的大小为48×48dp,表示在mdpi上,实际大小为48×48px,在hdpi像素密度上,实际尺寸为mdpi上的1.5倍,即72×72px,以此类推。
我们可以通过以下几种方式来支持各种屏幕尺寸:
wrap_content: 根据控件的内容设置控件的尺寸
math_parent: 根据父控件的尺寸大小设置控件的尺寸
weight: 权重,在线性布局中可以使用weight属性设置控件所占的比例
例如,我们要实现下图所显示的效果:当屏幕尺寸改变时,new reader控件两边的控件大小不变,new reader控件会占完剩余的空间。
具体布局文件如下:
小插曲: 关于 android:layout_weight 属性
一般情况,我们都是设置要进行比例分配的方向的宽度为0dp,然后再用权重进行分配。如下:
效果为:
效果为:
button1宽度=L+(L-2L)×1/3=2/3L
button2宽度=L+(L-2L)×2/3=1/3L
当然,还有其他的方式,都可以运用此公式进行计算。
在实际开发中,我们一般使用0dp的方式,而不使用其他方式。
简单的布局一般都使用 线性布局 ,而略微复杂点的布局,我们使用 相对布局 ,大多数时候,我们都是使用这两种布局的嵌套。
我们使用 相对布局 的原因是, 相对布局 能在各种尺寸的屏幕上保持控件间的相对位置。
res/layout/main.xml 单面板:
res/layout-large/main.xml 双面板:
如果这个程序运行在屏幕尺寸大于7inch的设备上,系统就会加载 res/layout-large/main.xml 而不是 res/layout/main.xml ,在小于7inch的设备上就会加载 res/layout/main.xml 。
需要注意的是,这种通过 large 限定符分辨屏幕尺寸的方法,适用于android3.2之前。在android3.2之后,为了更精确地分辨屏幕尺寸大小,Google推出了最小宽度限定符。
res/layout-sw600dp/main.xml ,双面板布局: Small Width 最小宽度
这种方式是不区分屏幕方向的。这种最小宽度限定符适用于android3.2之后,所以如果要适配android全部的版本,就要使用 large 限定符和 sw600dp 文件同时存在于项目 res 目录下。
这就要求我们维护两个相同功能的文件。为了避免繁琐操作,我们就要使用布局别名。
由于后两个文具文件一样,我们可以用以下两个文件代替上面三个布局文件:
res/layout/main.xml 单面板布局
res/layout/main_twopanes.xml 双面板布局
然后在 res 下建立
res/values/layout.xml 、
res/values-large/layout.xml 、
res/values-sw600dp/layout.xml 三个文件。
默认布局
res/values/layout.xml :
Android3.2之前的平板布局
res/values-large/layout.xml :
Android3.2之后的平板布局
res/values-sw600dp/layout.xml :
这样就有了 main 为别名的布局。
在activity中 setContentView(R.layout.main);
这样,程序在运行时,就会检测手机的屏幕大小,如果是平板设备就会加载 res/layout/main_twopanes.xml ,如果是手机设备,就会加载 res/layout/main.xml 。我们就解决了只使用一个布局文件来适配android3.2前后的所有平板设备。
如果我们要求给横屏、竖屏显示的布局不一样。就可以使用 屏幕方向限定符 来实现。
例如,要在平板上实现横竖屏显示不用的布局,可以用以下方式实现。
res/values-sw600dp-land/layouts.xml :横屏
res/values-sw600dp-port/layouts.xml :竖屏
自动拉伸位图,即android下特有的 .9.png 图片格式。
当我们需要使图片在拉伸后还能保持一定的显示效果,比如,不能使图片中的重要像素拉伸,不能使内容区域受到拉伸的影响,我们就可以使用 .9.png 图来实现。
要使用 .9.png ,必须先得创建 .9.png 图片,androidSDK给我们提供了的工具就包含 .9.png 文件的创建和修改工具。双击 SDK安装目录 oolsdraw9patch.bat ,就会打开下图所示的窗口。
下面是一个例子:
Button属性设置:
如果我们选择的内容区域偏差太大,可能就不会显示出text值 BUTTON 。
好了,这篇文章写的有点多了,剩下的内容放在 下篇文章 记录吧。
内容提要:
解决方案-支持各种屏幕密度
解决方案-实施自适应用户界面流程
未完待续
③ Android 屏幕适配
Android的屏幕大同小异,分辨率也是各种各样,手机App上的差异性还没那么明显,基本用Dp & weight就可以比较好的适配各种手机。但是在Pad上的表现就不尽如意,而且发现像华为Pad Pro这种高端设备,是可以通过系统设置去设置修改系统的density值,导致整个如果只用一套DpUI布局去实现,会出现很奇怪的UI效果,基本不能适配。这时候就需要对UI进行适配。通过资料查询,需要了解如下的几个概念
1.px,pixel 就是像素,最基本的真实显示单位
2.dp,dip, Density-independent pixel,设备的独立像素,1dp表示在屏幕像素点密度为160ppi时1px长度
3.ppi, pixel per inch ,每英寸对角像素点,这个是物理上的
4.dpi, dot per inch ,每英寸多少个点,这个是软件上的,这里的点跟像素点不同
5.sp: scale-independent pixel, 字体大小单位
简单换算就是
ppi =根号( 横屏像素点平方+纵屏像素点平方)➗对角线的长度,这个长度是一英寸
1dp = (dpi/160) px
然后有些不同尺寸手机的ppi可能是420, 430, 440, 450, 460.,由于物理ppi上是固定的,改变不了,为了适配,通过人为设置一个dpi,来规范这些差不多ppi值,使得这些相差差不多的屏幕都是通用一个dpi,也就是使用同一套设计方案。
一开始通过dp值来实现适配,是可以解决大部分适配问题,但是在遇到pad这种设备,由于是横屏,而且系统设置还可以修改density值,使得用一套固定屏幕(比如1280 * 800)的方向变得不是那么合适。
这时候想到可以通过Android中 dimens中定义dimen值,Android中可以通过sw去搜索对应的dimen值表来获取对应的配置,smallestWidth适配,sw限定符适配,只要我们把对应的表通过换算,得到一个新值,就可以得到在不同的density值中得到对应的dp值表,解决华为上一个设备对应不同density值的问题。
那么问题来了,如果去得到sw不同的dimens呢,网上的方法很多,有些自己写脚本,有些自己写程序生成,为了就是列举所有的值,一般1-1000dp,然后基于一个基准,比如360dp宽度,去换算出不同屏幕宽度的dimens值,这里我推荐Android Studio的插件ScreenMatch,先安装插件
然后在values中创建dimens文件夹,并创建dimens.xml,其中写上自己定义的dp值,如下
然后在该文件右键,选择screenmatch
插件就会生成一堆其他屏幕的dimens文件,并且自动生成1-800的其他dp值,基本满足开发中的定义,如果没有的话,就自行在这里定义,然后重新生成。
关于ScreenMatch的生成还有一个基准,就是基于那个dpi来生成,通过插件生成,在根目录会多出了两个文件,一个example, 一个config文件
这里我们看看properties文件,内容如下
其中base_dp=850就是基于850,然后可以通过match_dp去调整要适配的dpi值。
通过这方方式,会在dimens文件自动生成dimen文件
在网上看到,还可以通过修改density去修改,这种方式有空我在试试
④ Android 屏幕分辨率适配
Android屏幕分辨率千奇百怪,怎么让app在不同的分辨率的设备上“看起来一样”呢?
你也许还有以下疑惑:
这篇文章将会针对以上问题一一解答。
Pixels 我们看到屏幕上的图像由一个个像素组成,像素里包含色彩信息。
如常说的手机分辨率:1080 x 1920 指的是手机宽度可展示1080像素,高度可展示1920像素。
Pixels Per Inch 每英寸长度所具有的像素个数,单位面积内像素越多,图像显示越清晰。
ppi一般用在显示器、手机、平板等描述屏幕精细度。
Dots Per Inch 每英寸长度所具有的点数。
dpi一般用来描述打印(书本、杂志、电报)的精细度
density-independent pixels (device-independent pixels 我查了一下,官网更多时候使用前者,有的时候也显示后者),dip是缩写,也可以更简单些称作dp。该单位的目的是屏蔽不同设备密度差异,后面细说。
Scalable pixels 用于设置字体,在用户更改字体大小时候会适配。
澄清了基本概念,我们现在从一个例子开始说明以上单位之间的区别与联系。
布局文件里有个View,长宽都是200px,分别在分辨率为480(宽)x800(高)简称A设备、1080(宽)x1920(高)简称B设备,效果如下:
左边是A设备,右边是B设备。问题出来了,同样长宽都是200px,为啥A设备显示很大,B设备显示很小呢?你可能会说B设备的横向分辨率1080比A设备的480大,所以在B设备上看起来比较小。来看看A、B设备横向到底是多少英寸,怎么来计算呢?这时候就需要用到ppi了,既然知道横向的像素点个数,也知道每英寸能容纳的像素点,当然可以得知横向的尺寸了。
其中一种方式获取DisplayMetrics对象:
A设备宽度尺寸:480(px)/240(ppi)=2inch
B设备宽度尺寸:1080(px)/420(ppi)=2.5inch
可以看出,A、B设备尺寸差别不大。A设备ppi=240 B设备ppi=420,明显地看出B设备单位长度上比A设备能够容纳更多的像素,因此同样的200px,B设备只需要较小的尺寸就能够显示,因此在B设备上的view看起来比A设备小很多。
知道了问题的原因,然而显示的效果却不能接受。
我们总不能自己判断每个设备的ppi,然后计算实际需要多少像素,再动态设置view的大小吧,那layout里的静态布局大小就无法动态更改适应了。想当然的能有一个统一的地方替我们转换,没错!Android系统已经帮我们实现了转换。接下来就是dpi、dp出场了。
Android系统使用dpi来描述屏幕的密度,使用dp来描述密度与像素的关系。
A设备dpi=240
B设备dpi=420
Android系统最终识别的单位是px,怎么将dpi和px关联起来呢?,答案是dp。
Android规定当dpi=160时,1dp=1px,当dpi=240时,1dp=1.5px,依此类推,并且给各个范围的dpi取了简易的名字加以直观的识别,如120<dpi<=160,称作为mdpi,120<dpi<=240 称作hdpi,最终形成如下规则:
现在知道了dp能够在不同dpi设备上对应不同px,相当于中间转换层,我们只需要将view长宽单位设置为合适的dp,就无需关注设备之间密度差异,系统会帮我们完成dp-px转换。将我们之前的例子稍微更改,再看看效果验证一下:
通过上面对dp的了解,我们知道在设定view大小、间距时使用dp能最大限度地屏蔽设备密度之间的差异。可能你就会问了,那bitmap展示的时候如何适配不同密度的设备呢?
自定义view从磁盘上加载一张图片,并将之显示在view上,view的大小决定于bitmap大小。依旧以上述A、B设备为例,展示结果如下:
左边是A设备,右边是B设备。
明显地看出,在A设备显示比B设备大很多,实际上和我们之前用px来描述view的大小原理是一样的,bitmap的宽、高都是px在描述,而bitmap决定了view的宽、高,最终导致A设备和B设备上的view大小(宽、高像素)是一样的,而它们屏幕密度又不相同,因此产生了差异。
那不会每次都需要我们自己根据屏幕密度来转换bitmap大小吧?幸运的是,Android已经为我们考虑到了。
生成不同密度的目录有什么作用?
A设备dpi=240,根据dpi范围,属于hdpi
B设备dpi=420,根据dpi范围,属于xxhdpi
图片原始尺寸:photo1.jpg(宽高 172px-172px)
当我们想要在不同密度设备上显示同一张图片并且想要“看起来一样大时”。假设设计的时候以hdpi为准,放置photo1.jpg为172*172,那么根据计算规则在xxhdpi上需要设置photo1.jpg为:
现在hdpi和xxhdpi目录下分别存放了同名图片:photo1.jpg,只是大小不同。当程序运行的时候:
来看看效果:
左边A设备,右边B设备
针对不同的密度设计不同的图片大小,最大限度保证了同一图片在不同密度设备上表现“看起来差不多大”。
来看看A、B设备上图片占内存大小:
说明在B设备上显示photo1.jpg需要更多的内存。
上边只是列举了hdpi、xxhdipi,同理对于mdpi、xhdpi、xxxhdpi根据规则放入相应大小的图片,程序会根据不同的设备密度从对应的mipmap文件夹下加载资源。如此一来,我们无需关注bitmap在不同密度设备上显示问题了。
在mipmap各个文件夹下都放置同一套资源的不同尺寸文件似乎有点太占apk大小,能否只放某个密度下图片,其余的靠系统自己适配呢?
现在只保留hdpi下的photo1.jpg图片,看看在A、B设备上运行情况如何:
看起来和上张图差不多,说明系统会帮我们适配B设备上的图片。
再来看看A、B设备上图片占内存大小:
先看A设备:
对比photo1.jpg 分别放在hdpi、xxhdpi和只放在hdpi下可以看出:B设备上图片所占内存变小了。为什么呢?接下来从源码里寻找答案。
A、B设备同样加载hdpi/photo1.jpg,返回的bitmap大小不相同,我们从这方法开始一探究竟。
上面涉及到的关键点是density,分别是TypedValue的density和Options的density。
先来看看TypedValue density:
再来看看Options density
现在分析B设备加载hdpi/photo1.jpg如何做的:
和我们之前调试的结果一致。
B设备是怎么决定使用hdpi下的图片资源呢?
根据实验(尝试找了源码,没怎么看懂,因此只是做了实验,可能在不同密度设备上找寻规则不一样):B设备先找属于自己密度范围文件夹下的图片,B设备属于xxhdpi,先查看xxhdpi有没有photo1.jpg,如果没有则往更高的密度找,比它高的密度是xxxhdpi,还是没有,则往低密度找,找xhdpi,没有再找hdpi,找到了则返回构造好的TypedValue,剩下的就是我们前面分析的。
既然我们只想放某个密度下的一份切图,该放哪个密度下呢?从系统寻找规则看,更推荐放置在更高密度下的,因为如果放在低密度下,那么当运行在高密度设备上时,图片会进行放大,可能导致不清晰。我一般习惯放在xxhdpi下。
Android Studio默认创建了不同密度的mipmap文件夹,默认放置了ic_launcher.png。我们普通的切图该放drawable还是mipmap下呢?对于这个问题网上也是众说纷纭,实际上对于我们来说,关注的重点是图片放在drawable或者mipmap,加载出来bitmap是否有差异,如果没有差异放在哪就看习惯了。通过实践,普通的切图放drawable和mipmap下加载出来的bitmap是没有差异的,只不过用drawable的话需要自己创建不同密度的文件夹。我习惯于放在drawable下(启动图标logo还是放在mipmap下)。
前边 [注1] 留了个问题,我们使用dp来表示view的大小了,为啥两个看起来还是有些差距?下面我们更加直观地看一个例子。
A设备dpi=240 密度1.5 分辨率(宽高px):480 * 800
B设备dpi=420 密度2.625 分辨率(宽高px):1080 * 1794
换算成dp
A设备分辨率:320dp * 533dp
B设备分辨率:411dp * 683dp
依旧是上边的例子:
将view宽高分别设置为320dp,看看效果:
左边A设备,右边B设备
可以看出同样的320dp大小,A设备铺满了屏幕,而B设备没有。这效果显然是不能接受的,Android考虑到不同设备宽高不同,推出了"宽高限定符"。以A、B设备为例:
在res文件夹下创建文件夹:
假设设计师出图是按照800x480,那么我们创建dimen文件的时候
该文件放在values-800x480文件夹下。
根据分辨率比例算出1794x1080的dimen值
这样子,A、B设备加载资源的时候使用对应分辨率限定符下的px,如果找不到再找默认值,可以在一定程度上解决屏幕宽高碎片化适配问题。
但是这样子的限定比较严格,需要测试各种分辨率,后来Android又推出了"smallest-width"简称最小宽度限制。
A设备宽320dp
B设备宽411dp
假设设计师切图标准屏幕宽是320dp(A设备),那么可以定义如下dimen.xml文件
该文件放在values-sw320dp文件夹下
根据规则,计算B设备dimen.xml
现在我们继续来看之前的view
通过对dimen引用,A设备寻找和自己宽度一样的dimen文件,找到values-sw320dp,dp320=320dp。B设备寻找和自己宽度一样的dimen文件,找到values-sw411dp,dp320=410dp。这样子同样的dp320,得出不同的值,就适配了屏幕宽度不同的问题。
看看效果:
这次B设备也铺满了屏宽。
综上,为了适配不同屏幕大小,推荐使用dp+smallest-width。
获取设备dpi最终都是从这方法获取的,实际上就是读取系统的配置文件。因此我们也可以通过adb shell 获取:
可以看出dpi是系统配置好的,当然有些手机是可以设置分辨率的,设置之后我们查看分辨率:
分辨率变低了,dpi也变小了。
⑤ Android兼容性适配(一)—— 设备兼容性概览
Android 适用于众多类型的设备,从手机到平板电脑和电视都能搭载使用。作为开发者,如此广泛的设备类型能为您的应用带来广大的潜在受众群体。为了能在所有这些设备上顺利运行,应用应该容许部分设备功能的变化,并提供可适应不同屏幕配置的灵活界面。
随着您进一步阅读 Android 开发相关内容,您可能会在各种语境下遇到“兼容性”一词。兼容性有两种类型:设备兼容性和应用兼容性。
作为应用开发者,您无需担心设备是否兼容 Android,因为只有与 Android 兼容的设备才会附带 Google Play 商店或该设备的官方手机应用市场。因此,您可以放心,通过Google Play 商店和官方手机应用市场安装您的应用的用户使用的是 Android 兼容设备。
不过,您确实需要考虑您的应用是否兼容每一种可能的设备配置。由于 Android 以各种设备配置运行,因此部分功能并不适用于所有设备。例如,某些设备可能未配备罗盘传感器。如果应用的核心功能需要使用罗盘传感器,那么应用只能与带有罗盘传感器的设备兼容。
应用可通过平台 API 利用 Android 支持的各种功能。有些功能基于硬件(例如罗盘传感器),有些功能基于软件(如应用窗口微件),有些功能则依赖于平台版本。并非每台设备都支持所有功能,因此您可能需要根据应用所需的功能控制应用在设备上的可用性。
要尽可能扩大应用的用户群,您应设法使用单个 APK 支持尽可能多的设备配置。在大多数情况下,要实现这一目标,您可以在运行时停用可选功能,并为应用资源提供针对不同配置的替代选项(例如针对不同屏幕尺寸的不同布局)。不过,如果需要,您可以根据以下设备特征,通过 Google Play 商店限制应用在设备上的可用性:
为了让您根据设备功能管理应用的可用性,Android 为可能并不适用于所有设备的任何硬件或软件功能定义了功能 ID。例如,罗盘传感器的功能 ID 为 FEATURE_SENSOR_COMPASS,而应用微件的功能 ID 为 FEATURE_APP_WIDGETS。
根据需要,要在用户的设备不具备特定功能时阻止用户安装您的应用,您可以通过应用清单文件中的<uses-feature>元素声明这一点。
例如,如果您的应用在没有罗盘传感器的设备上没有意义,您可以使用以下清单标记声明需要罗盘传感器:
Google Play 商店会将您的应用所需的功能与每个用户的设备上可用的功能进行比较,以确定您的应用是否与每台设备兼容。如果设备不具备您的应用所需的所有功能,则用户无法安装您的应用。
但是,如果应用的主要功能不需要某项设备功能,则应将required属性设置为 "false"并在运行时检查是否有该设备功能。如果应用功能在当前设备上不可用,请适当降级相应的应用功能。例如,您可以通过调用hasSystemFeature()来查询功能是否可用,如下所示:
Kotlin
不同的设备可能会运行不同版本的 Android 平台,例如 Android 4.0 或 Android 4.4。每个后续的平台版本通常会添加之前版本中不可用的新 API。为表明可用的 API 集,每个平台版本都会指定API 级别。例如,Android 1.0 是 API 级别 1,而 Android 4.4 是 API 级别 19。
通过 API 级别,您可以使用<uses-sdk>清单标记及其minSdkVersion属性来声明应用兼容的最低版本。例如,Android 4.0(API 级别 14)中添加了 日历提供程序 API。如果您的应用在没有这些 API 的情况下无法运行,您应将 API 级别 14 声明为应用的最低支持版本。
minSdkVersion属性声明应用兼容的最低版本,targetSdkVersion属性声明应用经过优化后适用的最高版本。
不过,请注意<uses-sdk>元素中的属性会被替换为build.gradle文件中的相应属性。因此,如果您使用的是 Android Studio,则必须在其中指定minSdkVersion和targetSdkVersion值:
要详细了解build.gradle文件,请参阅 如何配置编译版本 。
每个后续版本的 Android 都为使用之前平台版本的 API 构建的应用提供兼容性,因此您的应用应始终与未来版本的 Android 兼容,同时使用已记录的 Android API。
注意 : targetSdkVersion 属性不会阻止您的应用安装在高于指定值的平台版本上,但它很重要,因为它向系统指示您的应用是否应继承较新版本中的行为更改。如果您不将 targetSdkVersion 更新到最新版本,则系统会认为您的应用在最新版本上运行时需要一些向后兼容性行为。例如,在 Android 4.4 中的行为更改 中,使用 AlarmManager API 创建的闹钟现在默认不精确,因此系统可以批量处理应用闹钟并节省系统电量,但如果您的目标 API 级别低于“19”,则系统会为您的应用保留之前的 API 行为。
不过,如果您的应用使用的是较新平台版本中添加的 API,但其主要功能并不需要这些 API,则应在运行时检查 API 级别,并在 API 级别过低时适当降级相应的功能。在这种情况下,请将 minSdkVersion 尽量设置为适用于应用主要功能的最低值,然后将当前系统的版本 SDK_INT 与 Build.VERSION_CODES 中对应于您要检查的 API 级别的一个代号常量进行比较。例如:
Android 可在各种尺寸的设备上运行,包括手机、平板电脑和电视。为了按照屏幕类型对设备进行分类,Android 为每种设备定义了两个特征:屏幕尺寸(屏幕的物理尺寸)和屏幕密度(屏幕上像素的物理密度,称为 DPI)。为了简化不同的配置,Android 将这些变体归纳成组,使它们更容易作为定位目标:
四种广义的尺寸:小、标准、大和特大。
还有几种广义的密度:mdpi(中)、hdpi(高)、xhdpi(超高)、xxhdpi(超超高)等。
默认情况下,您的应用会兼容所有屏幕尺寸和密度,因为系统会根据需要对各个屏幕的界面布局和图片资源进行相应的调整。不过,您应针对不同的屏幕尺寸添加专门的布局,针对常见的屏幕密度添加优化的位图图片,以优化每种屏幕配置的用户体验。
⑥ android 屏幕适配
@[TOC](文章目录)
<hr style=" border:solid; width:100px; height:1px;" color=#000000 size=1">
# 前言
<font color=#999AAA >使用工具Android studio,利用values文件下dimens.xml界面适配安卓屏幕</font>
<hr style=" border:solid; width:100px; height:1px;" color=#000000 size=1">
<font color=#999AAA >提示:以下是本篇文章正文内容,下面案例可供参考
# 一、概念
1.屏幕分辨率单位是px,例如Android手机常见的分辨率:320x480px、480x800px、720x1280px、1080x1920px。
2.手机屏幕的密度:每英寸的像素点数,单位是dpi。
| 密度类型 |代表的分辨率(px)| 屏幕像素密度(dpi) | 1dp转换为px |
|:--------|:--------|:--------|:--------|
| 低密度(ldpi) |240x320|120|0.75|
| 中密度(mdpi) |320x480|160|1|
| 高密度(hdpi)|480x800|240| 1.5|
| 超高密度(xhdpi)|720x1280|320|2|
| 超超高密度(xxhdpi) |1080x1920|480|3|
3.由于android的机型屏幕大小品类太多了,有一些是不标准的,这时我们就需要单独去获取屏幕的分辨率和密度了。
# 二、获取屏幕的分辨率和密度
```java
DisplayMetrics displayMetrics = getResources().getDisplayMetrics();
float density = displayMetrics.density;
int densityDpi = displayMetrics.densityDpi;
int width = displayMetrics.widthPixels;
int height = displayMetrics.heightPixels;
Log.e("123","密度:"+density+"---"+densityDpi);
Log.e("123","屏幕分辨率:"+width+"x"+height);
Log.e("123","安卓系统:"+android.os.Build.VERSION.RELEASE);
Log.e("123","手表型号:"+android.os.Build.PRODUCT);
```
# 三、SmallestWidth适配
**smallestWidth适配,或者叫sw限定符适配。指的是Android会识别屏幕可用高度和宽度的最小尺寸的dp值(其实就是手机的宽度值),然后根据识别到的结果去资源文件中寻找对应限定符的文件夹下的资源文件。**
**sw计算公式:sw = 屏幕宽度 / (dpi/160) 注:160是默认的**
**例如:屏幕宽度为1080px、480dpi 的sw = 1080/(480/160)**
# 四、生成 dimens 文件
1、 首先在 res 目录下新建各种尺寸的 values 文件 。文件名为:values-sw(你要适配屏幕的sw值)dp。
例如:
![code23](https://img-blog.csdnimg.cn/2020111311092374.PNG#pic_center)
注意:values文件下也生成 dimens文件
**生成dimens值工具类**
1、先生成标准的值。//value = (i + 1) * 1;
2、再用生成其他的值。 //value = (i + 1) * 需要生成的sw值/标准的sw值;
例如:value = (i + 1) * 160 / 320;
```java
public static void genDimen() {
StringBuilder stringBuilder = new StringBuilder();
try {
double value;
for (int i = 0; i < 500; i++) {
//value = (i + 1) * 1; //这里控制对应转换的值,如果是标准尺寸就一对一转换
//value = (i + 1) * 需要生成的sw值/标准的sw值; //这里控制对应转换的值
value = (i + 1) * 1
//value = (i + 1) * 160 / 320;
value = Math.round(value * 100) / 100;
//dp可改成sp
stringBuilder.append("<dimen name=\"size_" + (i + 1) + "\">" + value + "dp</dimen>\r\n");
}
if (stringBuilder.length() > 4000) {
for (int i = 0; i < stringBuilder.length(); i += 4000) {
if (i + 4000 < stringBuilder.length())
Log.e("123", stringBuilder.substring(i, i + 4000));
else
Log.e("123", stringBuilder.substring(i, stringBuilder.length()));
}
} else {
Log.e("123", stringBuilder.toString());
}
} catch (Exception e) {
e.printStackTrace();
} finally {
}
}
```
示例:(我这是以sw320为适配的标准的,你们可改自己的标准)
1、sw320的样例
```java
<resources>
<dimen name="dimen_1">1.0dp</dimen>
<dimen name="dimen_2">2.0dp</dimen>
<dimen name="dimen_3">3.0dp</dimen>
<dimen name="dimen_4">4.0dp</dimen>
<dimen name="dimen_5">5.0dp</dimen>
<dimen name="dimen_6">6.0dp</dimen>
<dimen name="dimen_7">7.0dp</dimen>
<dimen name="dimen_8">8.0dp</dimen>
<dimen name="dimen_9">9.0dp</dimen>
<dimen name="dimen_10">10.0dp</dimen>
<dimen name="size_1">1.0sp</dimen>
<dimen name="size_2">2.0sp</dimen>
<dimen name="size_3">3.0sp</dimen>
<dimen name="size_4">4.0sp</dimen>
<dimen name="size_5">5.0sp</dimen>
<dimen name="size_6">6.0sp</dimen>
<dimen name="size_7">7.0sp</dimen>
<dimen name="size_8">8.0sp</dimen>
<dimen name="size_9">9.0sp</dimen>
<dimen name="size_10">10.0sp</dimen>
</resources>
```
2、sw160的样例
```java
<resources>
<dimen name="dimen_1">0.0dp</dimen>
<dimen name="dimen_2">1.0dp</dimen>
<dimen name="dimen_3">1.0dp</dimen>
<dimen name="dimen_4">2.0dp</dimen>
<dimen name="dimen_5">2.0dp</dimen>
<dimen name="dimen_6">3.0dp</dimen>
<dimen name="dimen_7">3.0dp</dimen>
<dimen name="dimen_8">4.0dp</dimen>
<dimen name="dimen_9">4.0dp</dimen>
<dimen name="dimen_10">5.0dp</dimen>
<dimen name="size_1">0.0sp</dimen>
<dimen name="size_2">1.0sp</dimen>
<dimen name="size_3">1.0sp</dimen>
<dimen name="size_4">2.0sp</dimen>
<dimen name="size_5">2.0sp</dimen>
<dimen name="size_6">3.0sp</dimen>
<dimen name="size_7">3.0sp</dimen>
<dimen name="size_8">4.0sp</dimen>
<dimen name="size_9">4.0sp</dimen>
<dimen name="size_10">5.0sp</dimen>
</resources>
```
3、xml界面控件使用样例
```java
<TextView
android:layout_width="@dimen/dimen_30"
android:layout_height="@dimen/dimen_30"
android:textSize="@dimen/size_20"
android:layout_margin="@dimen/dimen_10"
android:padding="@dimen/dimen_10">
```
<hr style=" border:solid; width:100px; height:1px;" color=#000000 size=1">
# 总结
<font color=#999999 >提示:这里对文章进行总结:
如果你的app需要适配dpi较低的屏幕,最好以最小dpi的sw为适配的标准。
⑦ Android平板应用适配
首先是尺寸的适配,android平板和手机相比,由于pad的大屏特性,屏幕的尺寸和分辨率的差别就很明显,例如以下平板信息:
小米平板:4.4.4 densityDpi:320 size:1536x2048
华为平板:5.1.1 densityDpi:240 size:1200x1920
华为荣耀某平板:6.1 densityDpi:320 size:1200x1920
三星平板:6.0.1 densityDpi:320 size:1600x2560
同样的一套mdpi下的layout或者values放在上面华为荣耀平板和三星平板上显示差别就很大。下面是开发中关于设计的一些心得:
1. 开发中保持不增加布局层级的情况下采用百分比weight属性;针对不同尺寸的设备百分比缩放是体验最完美的,但由于实际开发中复杂界面如果采用百分比,无疑增加了层级复杂度,反而降低了性能,降低了可维护性和扩展性。
2. layout中使用的dp/sp值采用@dimen引用方式写进dimens.xml里面;为了方便采用多个values文件夹例如values-sw600dp,values-1280x720等针对特定屏幕适配。自然也可以采用layout-1280x720这样的来区分不同布局,但如果只是尺寸上的适配,无疑用dimens维护几套尺寸值是最容易的,还可以写个读写文件工具,修改一个values里的dimens文件后更新到所有的values文件;
3. 以上面的华为荣耀平板为例,采用sw(smallwidth)的方式进行适配,比较简单的计算方式,以mdpi(160)为标准,此平板的screenWidthDips = 1200/(320/160) = 600dp,所以values-sw600dp可以适配此平板(有的平板系统宽高是包含屏幕的虚拟按键的高度);
4. 为了苛求在不同尺寸平板上的体验,采用values-1200x1920,values-1600x2560这种方式,即为每个屏幕增加尺寸适配,工作量和效率来说不会影响太大,毕竟可以通过软件工具生成多套;
除了界面方面,平板开发上的模块化采用Fragment更多,以及Fragment嵌套Fragment:
5. Fragment中调用startActivityForResult,如果要在Fragment的onActivityResult里回调处理,那么不要采用getActivity().startActivityForResult方法,且宿主Activity如果重写了onActivityResult方法的,必须调用super.onActivityResult,否则Fragment的onActivityResult方法不会回调,这点可以从Activity的源码中看出来;
6. 嵌套在Fragment里的子Fragment的onActivityResult如果需要回调则要自己处理;
7. Fragment嵌套Fragment时,在Fragment里采用getChildFragmentManager()管理子Fragment,用法跟getSupportFragmentManager()一样;子Fragment之间的通信,可以采用事件总线方案进行解耦,例如Otto/EventBus,但可读性会下降,所以详细的注释还是必要的;