导航:首页 > 操作系统 > linuxudp多线程

linuxudp多线程

发布时间:2023-06-15 09:05:56

linux下udp编程如何同时获取源IP和端口及目的IP和端口

http://www.cnblogs.com/kissazi2/p/3158603.html

Ⅱ 做一个嵌入式Linux系统究竟要做哪些工作

1、Linux 基础

安装Linux操作系统 Linux文件系统 Linux常用命令 Linux启动过程详解 熟悉Linux服务能够独立安装Linux操作系统
能够熟练使用Linux系统的基本命令 认识Linux系统的常用服务安装Linux操作系统 Linux基本命令实践 设置Linux环境变量 定制Linux的服务
Shell 编程基础使用vi编辑文件 使用Emacs编辑文件 使用其他编辑器

2、Shell 编程基础

Shell简介 认识后台程序Bash编程熟悉Linux系统下的编辑环境 熟悉Linux下的各种Shell 熟练进行shell编程熟悉vi基本操作
熟悉Emacs的基本操作 比较不同shell的区别 编写一个测试服务器是否连通的shell脚本程序 编写一个查看进程是否存在的shell脚本程序
编写一个带有循环语句的shell脚本程序

3、Linux 下的C 编程基础

linux C语言环境概述 Gcc使用方法 Gdb调试技术 Autoconf Automake Makefile 代码优化
熟悉Linux系统下的开发环境 熟悉Gcc编译器 熟悉Makefile规则编写Hello,World程序 使用 make命令编译程序 编写带有一个循环的程序
调试一个有问题的程序

4、嵌入式系统开发基础

嵌入式系统概述交叉编译 配置TFTP服务 配置NFS服务 下载Bootloader和内核
嵌入式Linux应用软件开发流程熟悉嵌入式系统概念以及开发流程 建立嵌入式系统开发环境制作cross_gcc工具链 编译并下载U-boot
编译并下载Linux内核 编译并下载Linux应用程序

5、嵌入式系统移植

Linux内核代码 平台相关代码分析 ARM平台介绍 平台移植的关键技术 移植Linux内核到 ARM平台 了解移植的概念
能够移植Linux内核移植Linux2.6内核到 ARM9开发板

6、嵌入式 Linux 下串口通信

串行I/O的基本概念 嵌入式Linux应用软件开发流程 Linux系统的文件和设备 与文件相关的系统调用 配置超级终端和MiniCOM
能够熟悉进行串口通信 熟悉文件I/O 编写串口通信程序 编写多串口通信程序

7、嵌入式系统中多进程程序设计

Linux系统进程概述 嵌入式系统的进程特点 进程操作 守护进程 相关的系统调用了解Linux系统中进程的概念 能够编写多进程程序编写多进程程序
编写一个守护进程程序 sleep系统调用任务管理、同步与通信 Linux任务概述任务调度 管道 信号 共享内存 任务管理 API 了解Linux系统任务管理机制
熟悉进程间通信的几种方式 熟悉嵌入式Linux中的任务间同步与通信编写一个简单的管道程序实现文件传输 编写一个使用共享内存的程序

8、嵌入式系统中多线程程序设计

线程的基础知识 多线程编程方法 线程应用中的同步问题了解线程的概念 能够编写简单的多线程程序编写一个多线程程序

9、嵌入式 Linux 网络编程

网络基础知识 嵌入式Linux中TCP/IP网络结构 socket 编程 常用 API函数 分析Ping命令的实现 基本UDP套接口编程 许可证管理
PPP协议 GPRS 了解嵌入式Linux网络体系结构 能够进行嵌入式Linux环境下的socket 编程 熟悉UDP协议、PPP协议 熟悉GPRS
使用socket 编写代理服务器 使用socket 编写路由器 编写许可证服务器 指出TCP和UDP的优缺点 编写一个web服务器 编写一个运行在
ARM平台的网络播放器

10、GUI 程序开发

GUI基础 嵌入式系统GUI类型 编译QT 进行QT开发熟悉嵌入式系统常用的GUI 能够进行QT编程使用QT编写“Hello,World”程序
调试一个加入信号/槽的实例 通过重载QWidget 类方法处理事件

11、Linux 字符设备驱动程序

设备驱动程序基础知识 Linux系统的模块 字符设备驱动分析 fs_operation结构 加载驱动程序了解设备驱动程序的概念
了解Linux字符设备驱动程序结构 能够编写字符设备驱动程序编写Skull驱动 编写键盘驱动 编写I/O驱动 分析一个看门狗驱动程序
对比Linux2.6内核与2.4内核中字符设备驱动的不同Linux 块设备驱动程序块设备驱动程序工作原理 典型的块设备驱动程序分析
块设备的读写请求队列了解Linux块设备驱动程序结构 能够编写简单的块设备驱动程序比较字符设备与块设备的异同 编写MMC卡驱动程序 分析一个文件系统
对比Linux2.6内核与2.4内核中块设备驱动的不同

12、文件系统

虚拟文件系统 文件系统的建立 ramfs内存文件系统 proc文件系统 devfs 文件系统 MTD技术简介 MTD块设备初始化
MTD块设备的读写操作了解Linux系统的文件系统 了解嵌入式Linux的文件系统 了解MTD技术 能够编写简单的文件系统为 ARM9开发板添加 MTD支持
移植JFFS2文件系统 通过proc文件系统修改操作系统参数 分析romfs 文件系统源代码 创建一个cramfs 文件系统

无论选择哪一方向,基本的linux的知识是需要具备的,其他还需要掌握的知识有ARM(最常用的一款嵌入式处理器)和C语言编程,每一方面知识的掌握熟练程度都最终决定了个人进行嵌入式linux开发的综合能力。

更多详情来源:《华清远见嵌入式学院》

Ⅲ 在Linux 上,编写一个每秒接收 100万UDP数据包的程序究竟有多难

首先,我们假设:
测量每秒的数据包(pps)比测量每秒字节数(Bps)更有意思。您可以通过更好的管道输送以及发送更长数据包来获取更高的Bps。而相比之下,提高pps要困难得多。
因为我们对pps感兴趣,我们的实验将使用较短的 UDP 消息。准确来说是 32 字节的 UDP 负载,这相当于以太网层的 74 字节。
在实验中,我们将使用两个物理服务器:“接收器”和“发送器”。
它们都有两个六核2 GHz的 Xeon处理器。每个服务器都启用了 24 个处理器的超线程(HT),有 Solarflare 的 10G 多队列网卡,有 11 个接收队列配置。稍后将详细介绍。
测试程序的源代码分别是:udpsender、udpreceiver。
预备知识
我们使用4321作为UDP数据包的端口,在开始之前,我们必须确保传输不会被iptables干扰:

Shell

receiver$ iptables -I INPUT 1 -p udp --dport 4321 -j ACCEPT

receiver$ iptables -t raw -I PREROUTING 1 -p udp --dport 4321 -j NOTRACK

为了后面测试方便,我们显式地定义IP地址:

Shell

receiver$ for i in `seq 1 20`; do

ip addr add 192.168.254.$i/24 dev eth2;

done

sender$ ip addr add 192.168.254.30/24 dev eth3

1. 简单的方法
开始我们做一些最简单的试验。通过简单地发送和接收,有多少包将会被传送?
模拟发送者的伪代码:

Python

fd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

fd.bind(("0.0.0.0", 65400)) # select source port to rece nondeterminism

fd.connect(("192.168.254.1", 4321))

while True:

fd.sendmmsg(["x00" * 32] * 1024)

因为我们使用了常见的系统调用的send,所以效率不会很高。上下文切换到内核代价很高所以最好避免它。幸运地是,最近Linux加入了一个方便的系统调用叫sendmmsg。它允许我们在一次调用时,发送很多的数据包。那我们就一次发1024个数据包。
模拟接受者的伪代码:

Python

fd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
fd.bind(("0.0.0.0", 4321))
while True:
packets = [None] * 1024
fd.recvmmsg(packets, MSG_WAITFORONE)

同样地,recvmmsg 也是相对于常见的 recv 更有效的一版系统调用。
让我们试试吧:

Shell

sender$ ./udpsender 192.168.254.1:4321
receiver$ ./udpreceiver1 0.0.0.0:4321
0.352M pps 10.730MiB / 90.010Mb
0.284M pps 8.655MiB / 72.603Mb
0.262M pps 7.991MiB / 67.033Mb
0.199M pps 6.081MiB / 51.013Mb
0.195M pps 5.956MiB / 49.966Mb
0.199M pps 6.060MiB / 50.836Mb
0.200M pps 6.097MiB / 51.147Mb
0.197M pps 6.021MiB / 50.509Mb

测试发现,运用最简单的方式可以实现 197k – 350k pps。看起来还不错嘛,但不幸的是,很不稳定啊,这是因为内核在核之间交换我们的程序,那我们把进程附在 CPU 上将会有所帮助

Shell

sender$ taskset -c 1 ./udpsender 192.168.254.1:4321
receiver$ taskset -c 1 ./udpreceiver1 0.0.0.0:4321
0.362M pps 11.058MiB / 92.760Mb
0.374M pps 11.411MiB / 95.723Mb
0.369M pps 11.252MiB / 94.389Mb
0.370M pps 11.289MiB / 94.696Mb
0.365M pps 11.152MiB / 93.552Mb
0.360M pps 10.971MiB / 92.033Mb

现在内核调度器将进程运行在特定的CPU上,这提高了处理器缓存,使数据更加一致,这就是我们想要的啊!
2. 发送更多的数据包
虽然 370k pps 对于简单的程序来说已经很不错了,但是离我们 1Mpps 的目标还有些距离。为了接收更多,首先我们必须发送更多的包。那我们用独立的两个线程发送,如何呢:

Shell

sender$ taskset -c 1,2 ./udpsender
192.168.254.1:4321 192.168.254.1:4321
receiver$ taskset -c 1 ./udpreceiver1 0.0.0.0:4321
0.349M pps 10.651MiB / 89.343Mb
0.354M pps 10.815MiB / 90.724Mb
0.354M pps 10.806MiB / 90.646Mb
0.354M pps 10.811MiB / 90.690Mb

接收一端的数据没有增加,ethtool –S 命令将显示数据包实际上都去哪儿了:

Shell

receiver$ watch 'sudo ethtool -S eth2 |grep rx'
rx_nodesc_drop_cnt: 451.3k/s
rx-0.rx_packets: 8.0/s
rx-1.rx_packets: 0.0/s
rx-2.rx_packets: 0.0/s
rx-3.rx_packets: 0.5/s
rx-4.rx_packets: 355.2k/s
rx-5.rx_packets: 0.0/s
rx-6.rx_packets: 0.0/s
rx-7.rx_packets: 0.5/s
rx-8.rx_packets: 0.0/s
rx-9.rx_packets: 0.0/s
rx-10.rx_packets: 0.0/s

通过这些统计,NIC 显示 4 号 RX 队列已经成功地传输大约 350Kpps。rx_nodesc_drop_cnt 是 Solarflare 特有的计数器,表明NIC发送到内核未能实现发送 450kpps。
有时候,这些数据包没有被发送的原因不是很清晰,然而在我们这种情境下却很清楚:4号RX队列发送数据包到4号CPU,然而4号CPU已经忙不过来了,因为它最忙也只能读350kpps。在htop中显示为:

多队列 NIC 速成课程
从历史上看,网卡拥有单个RX队列,用于硬件和内核之间传递数据包。这样的设计有一个明显的限制,就是不可能比单个CPU处理更多的数据包。
为了利用多核系统,NIC开始支持多个RX队列。这种设计很简单:每个RX队列被附到分开的CPU上,因此,把包送到所有的RX队列网卡可以利用所有的CPU。但是又产生了另一个问题:对于一个数据包,NIC怎么决定把它发送到哪一个RX队列?

用 Round-robin 的方式来平衡是不能接受的,因为这有可能导致单个连接中数据包的重排序。另一种方法是使用数据包的hash值来决定RX号码。Hash值通常由一个元组(源IP,目标IP,源port,目标port)计算而来。这确保了从一个流产生的包将最终在完全相同的RX队列,并且不可能在一个流中重排包。
在我们的例子中,hash值可能是这样的:

Shell

1

RX_queue_number = hash('192.168.254.30', '192.168.254.1', 65400, 4321) % number_of_queues

多队列 hash 算法
Hash算法通过ethtool配置,设置如下:

Shell

receiver$ ethtool -n eth2 rx-flow-hash udp4
UDP over IPV4 flows use these fields for computing Hash flow key:
IP SA
IP DA

对于IPv4 UDP数据包,NIC将hash(源 IP,目标 IP)地址。即

Shell

1

RX_queue_number = hash('192.168.254.30', '192.168.254.1') % number_of_queues

这是相当有限的,因为它忽略了端口号。很多NIC允许自定义hash。再一次,使用ethtool我们可以选择元组(源 IP、目标 IP、源port、目标port)生成hash值。

Shell

receiver$ ethtool -N eth2 rx-flow-hash udp4 sdfn
Cannot change RX network flow hashing options: Operation not supported

不幸地是,我们的NIC不支持自定义,我们只能选用(源 IP、目的 IP) 生成hash。
NUMA性能报告
到目前为止,我们所有的数据包都流向一个RX队列,并且一个CPU。我们可以借这个机会为基准来衡量不同CPU的性能。在我们设置为接收方的主机上有两个单独的处理器,每一个都是一个不同的NUMA节点。
在我们设置中,可以将单线程接收者依附到四个CPU中的一个,四个选项如下:
另一个CPU上运行接收器,但将相同的NUMA节点作为RX队列。性能如上面我们看到的,大约是360 kpps。
将运行接收器的同一 CPU 作为RX队列,我们可以得到大约430 kpps。但这样也会有很高的不稳定性,如果NIC被数据包所淹没,性能将下降到零。
当接收器运行在HT对应的处理RX队列的CPU之上,性能是通常的一半,大约在200kpps左右。
接收器在一个不同的NUMA节点而不是RX队列的CPU上,性能大约是330 kpps。但是数字会不太一致。
虽然运行在一个不同的NUMA节点上有10%的代价,听起来可能不算太坏,但随着规模的变大,问题只会变得更糟。在一些测试中,每个核只能发出250 kpps,在所有跨NUMA测试中,这种不稳定是很糟糕。跨NUMA节点的性能损失,在更高的吞吐量上更明显。在一次测试时,发现在一个坏掉的NUMA节点上运行接收器,性能下降有4倍。
3.多接收IP
因为我们NIC上hash算法的限制,通过RX队列分配数据包的唯一方法是利用多个IP地址。下面是如何将数据包发到不同的目的IP:

1

sender$ taskset -c 1,2 ./udpsender 192.168.254.1:4321 192.168.254.2:4321

ethtool 证实了数据包流向了不同的 RX 队列:

Shell

receiver$ watch 'sudo ethtool -S eth2 |grep rx'
rx-0.rx_packets: 8.0/s
rx-1.rx_packets: 0.0/s
rx-2.rx_packets: 0.0/s
rx-3.rx_packets: 355.2k/s
rx-4.rx_packets: 0.5/s
rx-5.rx_packets: 297.0k/s
rx-6.rx_packets: 0.0/s
rx-7.rx_packets: 0.5/s
rx-8.rx_packets: 0.0/s
rx-9.rx_packets: 0.0/s
rx-10.rx_packets: 0.0/s

接收部分:

Shell

receiver$ taskset -c 1 ./udpreceiver1 0.0.0.0:4321
0.609M pps 18.599MiB / 156.019Mb
0.657M pps 20.039MiB / 168.102Mb
0.649M pps 19.803MiB / 166.120Mb

万岁!有两个核忙于处理RX队列,第三运行应用程序时,可以达到大约650 kpps !
我们可以通过发送数据到三或四个RX队列来增加这个数值,但是很快这个应用就会有另一个瓶颈。这一次rx_nodesc_drop_cnt没有增加,但是netstat接收到了如下错误:

Shell

receiver$ watch 'netstat -s --udp'
Udp:
437.0k/s packets received
0.0/s packets to unknown port received.
386.9k/s packet receive errors
0.0/s packets sent
RcvbufErrors: 123.8k/s
SndbufErrors: 0
InCsumErrors: 0

这意味着虽然NIC能够将数据包发送到内核,但是内核不能将数据包发给应用程序。在我们的case中,只能提供440 kpps,其余的390 kpps + 123 kpps的下降是由于应用程序接收它们不够快。
4.多线程接收
我们需要扩展接收者应用程序。最简单的方式是利用多线程接收,但是不管用:

Shell

sender$ taskset -c 1,2 ./udpsender 192.168.254.1:4321 192.168.254.2:4321
receiver$ taskset -c 1,2 ./udpreceiver1 0.0.0.0:4321 2
0.495M pps 15.108MiB / 126.733Mb
0.480M pps 14.636MiB / 122.775Mb
0.461M pps 14.071MiB / 118.038Mb
0.486M pps 14.820MiB / 124.322Mb

接收性能较于单个线程下降了,这是由UDP接收缓冲区那边的锁竞争导致的。由于两个线程使用相同的套接字描述符,它们花费过多的时间在UDP接收缓冲区的锁竞争。这篇论文详细描述了这一问题。
看来使用多线程从一个描述符接收,并不是最优方案。
5. SO_REUSEPORT
幸运地是,最近有一个解决方案添加到 Linux 了 —— SO_REUSEPORT 标志位(flag)。当这个标志位设置在一个套接字描述符上时,Linux将允许许多进程绑定到相同的端口,事实上,任何数量的进程将允许绑定上去,负载也会均衡分布。
有了SO_REUSEPORT,每一个进程都有一个独立的socket描述符。因此每一个都会拥有一个专用的UDP接收缓冲区。这样就避免了以前遇到的竞争问题:

Shell

1
2
3
4

receiver$ taskset -c 1,2,3,4 ./udpreceiver1 0.0.0.0:4321 4 1
1.114M pps 34.007MiB / 285.271Mb
1.147M pps 34.990MiB / 293.518Mb
1.126M pps 34.374MiB / 288.354Mb

现在更加喜欢了,吞吐量很不错嘛!
更多的调查显示还有进一步改进的空间。即使我们开始4个接收线程,负载也会不均匀地分布:

两个进程接收了所有的工作,而另外两个根本没有数据包。这是因为hash冲突,但是这次是在SO_REUSEPORT层。
结束语
我做了一些进一步的测试,完全一致的RX队列,接收线程在单个NUMA节点可以达到1.4Mpps。在不同的NUMA节点上运行接收者会导致这个数字做多下降到1Mpps。
总之,如果你想要一个完美的性能,你需要做下面这些:
确保流量均匀分布在许多RX队列和SO_REUSEPORT进程上。在实践中,只要有大量的连接(或流动),负载通常是分布式的。
需要有足够的CPU容量去从内核上获取数据包。
To make the things harder, both RX queues and receiver processes should be on a single NUMA node.
为了使事情更加稳定,RX队列和接收进程都应该在单个NUMA节点上。
虽然我们已经表明,在一台Linux机器上接收1Mpps在技术上是可行的,但是应用程序将不会对收到的数据包做任何实际处理——甚至连看都不看内容的流量。别太指望这样的性能,因为对于任何实际应用并没有太大用处。

Ⅳ 在Linux上,编写一个每秒接收100万UDP数据包的程序究竟有多难

UDP接收比TCP接收要简单很多,性能也要高很多
假设你要接受的UDP包都是最大MTU,不大于1500字节一个包,100万个UDP包也就是1.5GBps的流量,这个并不困难,当然首先网口要有足够的带宽。我以前开发的流媒体转发服务,在生产环境下,一台设备上游UDP包可以接收2.7GBps,并同时转发出去。
当然这个和程序运行的设备配置是有关系的,主要是网卡和CPU
给你几个建议:
1:多线程处理,单个线程处理能力还是有限的,同时尽量把线程绑定到CPU核上。
2:linux系统的网络参数要优化,包括读写缓冲区大小
3:如果非必要,可以采用阻塞模式接收,性能比非阻塞要好。

Ⅳ Linux内核应该怎么去学习

1 学习一些操作系统的理论知识,一些概念。比如:进程,内存管理,文件系统等等。关于这一方面的书籍太多了,自己找一本就行了

2 学习x86汇编,虽然linux用的是AT&T汇编,但二者只是格式不同而已。而且学习x86汇编有助于了解x86系统结构。书籍推荐王爽的《汇编语言》 ,我学的时候用的不是这个,后面看到这本书,才觉得自己做了“苦功了”。学完大部分汇编指令时,找些汇编程序读读,熟悉这些指令的用法。不需要有写汇编程序的能力,能读就行了,当然会写更好

3 赵炯的《Linux内核0.11完全注释》。这个linux内核版本低,作者也讲得很详细。不过关于x86体系的那一部分,作者讲得很繁琐,这一部分一定要大体看懂,那后面章节的内容就没有多大的问题了。我先把书通看了一遍,用了1个月的时间。后来,再返回来一个一个研究,用了2个月。
之所以看这本书,是让自己对内核有个实质的感受,不仅仅只是理论上的东西。

4 毛德操的《linux内核情景分析》。linux内核版本2.4.0,这本书很厚,上下两册。我通读一遍,用了2个月时间。后来,再返回来一个一个研究,现在已用了2个月,正在研究中。。。。就我个人觉得,linux内核最难的是内存管理,这2个月我就只大体搞清内存页面的周转,但搞清了这个,就会对内核的整体结构有个大致的了解,因为你已经清楚了用户进程和内核的其它部分是怎样使用内存页面的。

5 学习linux内核最需要的是坚持和思考。这是一个很长的过程,也许你会发现学了linux内核,并不会给你带来什么,我现在就是这样觉得的,感觉自己什么都不会做,真希望有人能我一些建议!不过学习学习也是有好处的,比如看了赵炯的《Linux内核0.11完全注释》后,你再去看UCOS-II,会感觉那太容易了!也许学习linux内核会对将来的工作有所帮助吧!

Ⅵ linux udp 端口复用问题! 求教!

int reuse = 1;
setsockopt(sockfd,SOL_SOCKET,SO_REUSEADDR,&reuse);//设置套接字属性为重用bind地址,

阅读全文

与linuxudp多线程相关的资料

热点内容
老韩综app怎么看不了了 浏览:225
只有一个程序员的体验 浏览:321
用服务器地址怎么有网 浏览:550
路由器服务器昵称是什么 浏览:713
程序员男友消失了 浏览:399
程序员搜索框自动提示 浏览:26
android44api20 浏览:675
adb刷recovery命令 浏览:695
广联达正版加密锁可以补办吗 浏览:943
java程序员一天多少行代码 浏览:946
丧尸危机java 浏览:123
华为手机怎么去除app标记未读信息 浏览:854
java监控文件夹 浏览:805
群控服务器主机怎么转变普通电脑 浏览:707
手机怎么调整app大小 浏览:455
加密门禁卡揭秘 浏览:139
词释pdf 浏览:993
安卓手机上如何停止自动续费 浏览:882
加密编码摘要 浏览:787
疫情命令党 浏览:498