❶ 14-linux gpio模拟spi
首先是spidev,要在/dev/下面产生设备文件,需要spidev的支持
使用的是gpio模拟spi,gpio模拟spi的时序原理是bitbang文件实现的,所以这个也需要打开,如果是在openwrt下动态加载的话就是如下两个配置
如果是直接内核的话是如下两个
跟I2C的arch层一样,主要是devices的添加和board_info的添加,如下
对于platform_add_devices,因为是使用spi_gpio,所以name是"spi_gpio"这样才可以与driver里面的spi_gpio相互匹配probe到。
因为SPI是可以一个总线上面挂多个,然后通过片选脚CS进行硬件切换,所以这变有个num_chipselect需要设置,如果有2个设置就设置2,一个设备就设置1,这边设置好之后,后面board_info也要有对应的个数,而且片选引脚需要不同。
I2C是通过每个设备有自己不同的地址,通过地址来进行软件切换。
对于board_info使用的是spidev,drivers/spi/spidev.c文件,该文件的内容是注册一个spidev驱动。该驱动是一个字符设备驱动。
如果设备与驱动匹配,那么就会执行spidev_probe()的内容。在spidev_probe()函数中会调用device_create()成功后在 /dev 目录下就会生成 spidev 相关的设备节点。
这边有几个参数要注意:
调试过程想看一些细节的debug信息可以打开内核的动态debug信息,这个在以前的print system里面有
printk的等级设置成8.
开始
定位到是 spi_gpio_request 的时候报错
后仿橘者面就将zkernel/3.10.49/arch/mips/mtk/ziroom/zrmt7628.c里面GPIO的信息调整下, 因为SPI的引脚和LED的引脚号一样 ,内核不知道哪里会检测到。
修改后打印备薯如下:
之后在/dev/下面就生成了spidev1.0的设备
有了/dev/spidev1.0设备之后,就可以在应用成操作改设备收发数据。
在drivers/spi/spidev.c里面已经封装好了ioctl的对应接口,根据这些伍禅接口就可以测试使用。
在Documentation/spi/spidev_test.c下面有个应用层的实例,打开看下就清除了。
$(cc) spidev_test.c -o spidev_test生成可执行文件spidev_test
然后拷贝到板子上,将MOSI和MISO短接就可以测试回环数据是否正常。
有逻辑分析仪的接上logic看波形就更加直观。
gpio模拟SPI:
https://blog.csdn.net/luckywang1103/article/details/70145870
在ARM Linux下使用GPIO模拟SPI时序详解:
https://blog.csdn.net/yangzheng_yz/article/details/50470577
linux SPI驱动:
https://www.cnblogs.com/xuyh/category/903809.html
❷ linux下的SPI使用方法是怎样的
如果linux中已经提供了驱动,并且在/dev/目录下已经提供了相应的设备文件节点。那么可以和串口一样直接打开设置读写。如果内核中有驱动,但是没有生成设备文件节点,那么只要知道设备的主次设备号,可以使用mknode建立设备文件节点,然后直接来使用。如果没有驱动就需要自己添加设备驱动了。这个也分两种情况,看你外设怎么和你的板子连接的。如果接到板子上的spi控制器上,可以直接编写通过控制器来控制外设的驱动,这种情况一般生产主控芯片的厂家都已经提供了驱动。如果没有接到spi控制器上,而是通过gpio连接的外设,你编写的驱动就需要自己来模拟spi协议来控制外设。
❸ linux驱动调用spi标准函数spi_sync发送速率慢的问题
/*这是一个简单的用户程序与驱动交互的例程*/
void main(void)
{
int testdev;
int i;
char buf[10];
/* 这里是用的open系统调用,是linux内核接口函数,不是库亮余燃函数,返回fd,详细请google ,这个open最终会调用驱动中的open函数(代码流程是这样的open()->sys_open()->filp_open()->dentry_open()->驱动open)*/
testdev=open("/dev/test",O_RDWR);
if(testdev==-1)
{
printf("Cann'topenfile...../n");
exit(0);
}
printf("buf=0x%x/n",buf);
/*下面的readwrite和ioctl是用户程序和内核驱动的最直接的交互方式*/
read(testdev,buf,10);
write(testdev,buf,1);
led_ctl.port='G';
led_ctl.bit=5;
led_ctl.value=0;敬虚毁搜
ioctl(testdev,GPIO_IO_SET_GPG,&led_ctl);
printf("%s",buf);
pause();
close(testdev);
❹ 基于LINUX环境的自动化测试的研究应用
(一)各种技术应用的前提。对于在开源社区和一些开源项目中获得的测试工具,首先需要了解工具适用于哪些类型应用的测试,以及工具发布后的发布说明和FAQ。开源的工具通常不像商业工具那样成熟稳定,因此找出工具的适用范围以及探索工具的实现程度是进行自动化测试应用的前提。
(二)各种技术应用的环境需求。对于各类工具,需要关注编译和运行时对各种包和库及其版本的依赖关系以及对预先安装的应用的依赖关系。这些在用户手册中都有详尽的说明。
(三)服务器性能监视器。大部分测试工具没有提供服务器端的性能监控功能,测试工程师需要根据实际的需求编写性能监控脚本来配合工具的使用。
下面结合曾经参与进行过的Linux平台下的自动化测试的研究,面向不同类别的测试用例自动化的需求,将主要从功能测试,如GUI测试、命令行客户端的测试,以及性能测试等几个方面对Linux平台下的测试工作的自动化进行分析和说明。
GZW自动化洲试
对于GUI测试的自动化,通常的测试工具所使用的捕捉/回放技术有两种,一种是通过记录界面的鼠标事件(如点击、移动)和键盘事件来完成录制和回放,另外一种则是录制和回放都是基于控件的识别和操作进行的掘空,每个脚本的执行都是控件对象的属性改变或事件触发。我们从开源社区可以获得如上两种类型的运行于Linux平台之上的典型测试工具,如Knee和LDTP等。
(一)Xnee工具
在Linux操作系统的xll环境下,Xnee能够录制、回放和分发用户的动作。Xnee的捕捉/回放技术是记录鼠标事件和键盘事件。进入录制模式时,Xnee记录发送至和来自X server之间的协议数据拷贝,并生成Xneesession文件。在回放模式下,Xnee读取Xnee Session中的事件,模仿整个录制过程(即用户操作过程)完成和x server之间的通讯,被录制的应用软件(Xclient)则接收来自xserver的消息,完成预设的动作。
(二)LDTP测试工具/框架
Linux Desktop Testing Project(LDTP)测试工具/框架能够基于用户在应用界面的选择进行脚本的录制。LDTPI具使用了Gnome环境下的Accessibility库即辅助选项库(at-spi)。使用辅助选项能够获得应用通过AT-SPI协议提供的关于用户界面的信息和界面控件的当前状态或者属性。LDTPI具/框架的体系结构如下:
AT-SPI的基础思想就是为用户界面的可视化元素提供对应的辅助对象,而录制完成的每个脚本的执行都是基于这些辅助对象进行的。对于希望利用LDTPI具进行测试的应用,需要激活辅助选项。
(三)GUI自动化测试工具的应用
在实际的GUI自动化测试中,LDTPI具应用的场景会更广泛一些。LDTPI具可以识别窗口中的对象(如按钮),测试脚本使用LDTP的API接口,每个API接口对UI对象进行操作判局瞎存在两个最基本的入口,即窗口和对象腊早,窗口通过窗口的类型和名称(即标题)识别,对象通过希望操作的控件的类型和名称(标签或者关联的标签)识别。我们同样可以通过at-pokel具展现激活了辅助选项的应用程序窗口的对象及对象属性。在测试Linux桌面产品和服务器产品的过程中,使用LDTPI具可以测试任何启用辅助选项的Gnome应用,如Mozilla,OpenOffice.org、Evolution邮件客户端,Nautilus文件浏览器等等,此外还可以测试UI界面基于Swing的Java应用,以及KDE4.O上基于QT4.0的应用等等。
而Xneel具所针对的应用程序类型就没有特别的限制,对于一些简单的窗口验证测试和界面的稳定性测试等则比较有效。Xnee相对于基于控件方式捕获和回放的工具而言,不用担心存在控件不能被识别的问题。
从使用的情况来看,各个工具也都因为实现技术而存在一定的缺陷,如两个工具均不能插入验证点,从而不能实现用例级别的结果验证;LDTP对于界面的个别元素捕获不到以及不能对不支持辅助选项的应用进行测试等等;而Xneel具生成的脚本可编辑性差,同时由于录制生成的脚本中的事件和屏幕坐标相关,因此当出现窗口弹出位置发生变化等问题时,就需要考虑回放时应该如何来处理这些变化。
❺ 请教linux的SPI驱动问题
内核版本2.6.30。编进内核的SPI驱动,通过看代码我明白了,大致过程是这样:
1、先创建一个spi_board_info结构描述spi设备信息,调用spi_register_board_info将这个结构添加到board_list中。
2、然后调用spi_register_master注册SPI控制器驱动,此时会调用scan_boardinfo扫描board_list,根据spi_board_info调用spi_new_device生成spi_device结构,用spi_add_device添加设备。
3、调用spi_register_driver注册spi_driver,通过与device匹配驱动设备。