㈠ 单片机(型号89C52)之简易数字电压表的设计
这个是最基本的,你首先要把他分开,AD采样,和数值显示两部分,其实你可以先读懂C的程序,用Keil编译器编译,然后在Keil编译器里就可以看到汇编了,下面给你个参看,运行条件为8051单片机,12M晶振,ADC0808,共阴数码管。
;********************************************************
;########################################################
OE BIT P3.0 ;ADC0808的OE端
EOC BIT P3.1 ;ADC0808的EOC端
ST BIT P3.2 ;ADC0808的START和ALE端
ADD0 BIT P3.4 ;ADC0808的模拟输入选择端
ADD1 BIT P3.5
ADD2 BIT P3.6
LED_0 DATA 30H ;显示缓冲区
LED_1 DATA 31H
LED_2 DATA 32H
LED_3 DATA 33H
ADC DATA 34H ;存放转换后的数据
;//////主程序开始////////////////////////////////////////
ORG 0000H
AJMP START
ORG 0030H
;------初始化-----------------------------------
START: MOV SP,#60H ;设置堆栈
MOV LED_0,#00H ;清空显示缓冲区
MOV LED_1,#00H
MOV LED_2,#00H
MOV LED_3,#00H
MOV DPTR,#TABLE ;送字型码表首地址
SETB ADD0
SETB ADD1
CLR ADD2 ;选择ADC0808的通道3
;------ADC0808转换------------------------------
WAIT: CLR ST
SETB ST
CLR ST ;启动转换
JNB EOC,$ ;等待转换结束
SETB OE ;允许输出
MOV ADC,P1 ;暂存转换结果
CLR OE ;关闭输出
;------数据处理,已备显示------------------------
MOV A,ADC ;将AD转换结果转换成BCD码
MOV B,#0C3H ;乘以19.5MV
MUL AB
MOV R7,A
MOV R6,B
HB2: CLR A ;BCD码初始化
CLR C
MOV R3,A
MOV R4,A
MOV R5,A
MOV R2,#10H ;转换双字节十六进制整数
HB3: MOV A,R7 ;从高端移出待转换数的一位到CY中
RLC A
MOV R7,A
MOV A,R6
RLC A
MOV R6,A
MOV A,R5 ;BCD码带进位自身相加,相当于乘2
ADDC A,R5
DA A ;十进制调整
MOV R5,A
MOV A,R4
ADDC A,R4
DA A
MOV R4,A
MOV A,R3
ADDC A,R3
MOV R3,A ;双字节十六进制数的万位数不超过6,不用调整
DJNZ R2,HB3
MOV A,R5
SWAP A
ANL A,#0FH
MOV LED_0,A
MOV A,R4
ANL A,#0FH
MOV LED_1,A
MOV A,R4
SWAP A
ANL A,#0FH
MOV LED_2,A
MOV A,R3
ANL A,#0FH
MOV LED_3,A
LCALL DISP ;调用显示子程序
AJMP WAIT
;//////数码管显示子程序///////////////////////////////////////////////
DISP: MOV A,LED_0 ;数码显示子程序
MOVC A,@A+DPTR
CLR P2.3
MOV P0,A
LCALL DELAY
SETB P2.3
MOV A,LED_1
MOVC A,@A+DPTR
CLR P2.2
MOV P0,A
LCALL DELAY
SETB P2.2
MOV A,LED_2
MOVC A,@A+DPTR
CLR P2.1
MOV P0,A
LCALL DELAY
SETB P2.1
MOV A,LED_3
MOVC A,@A+DPTR
CLR P2.0
MOV P0,A
SETB P0.7
LCALL DELAY
SETB P2.0
RET
;//////延时子程序////////////////////////////////////
DELAY: MOV R6,#0AH ;延时5毫秒
D1: MOV R7,#0FAH
DJNZ R7,$
DJNZ R6,D1
RET
;//////数码管字形码表/////////////////////////////////
TABLE: DB 3FH,06H,5BH,4FH,66H
DB 6DH,7DH,07H,7FH,6FH
;/////程序结束////////////////////////////////////////
END
㈡ 毕设:基于单片机的数字电压表的设计
2路3相应该算6路
0.5%的话只要8bit就够了
找一个带ad的51
max232
串口通信
c8051f320也可以
奢侈了点
输入用电阻分压
加运放
就可以了
还有几个按键和数码管显示电路
不是很复杂
㈢ 怎样用单片机设计多路数字电压表
单片机设计多路数字电压表,主要是设计采集,将输入的电压量(模拟信号)转换成数字量(二进制),通常老的方案都是用51单片机+AD转换芯片。AD转换芯片的位数就决定了你的分辨率,你的是5V/0.019=263,转换成为二进制数8位AD芯片可能精度不够,要选用10位AD芯片,最小分辨率可以达到0.0048V,如果按照经典老方案来做,你的成本会比较高51单片机6元+10位AD芯片20元。建议你采用带有51内核并自带AD功能的单片机,如STC5412AD,价格只要13-14元就可以了,而且编程方便,不需要增加外围电路。因为STC5412AD芯片IO口比较少,只有23个IO口,我数码管显示和键盘扫描用的ZLG7289,我自己做出来一个,效果很好,电压能精确到0.001V显示。我只了1路显示,STC5412AD单片机还有其他AD口可以用,一块芯片可以做出4路电压采集来。多路的话建议用多路开关进行切换就好了,否则成本太高。
㈣ 单片机设计制作数字电压表
3.系统板上硬件连线
a)把“单片机系统”区域中的P1.0-P1.7与“动态数码显示”区域中的ABCDEFGH端口用8芯排线连接。
b)把“单片机系统”区域中的P2.0-P2.7与“动态数码显示”区域中的S1S2S3S4S5S6S7S8端口用8芯排线连接。
c)把“单片机系统”区域中的P3.0与“模数转换模块”区域中的ST端子用导线相连接。
d)把“单片机系统”区域中的P3.1与“模数转换模块”区域中的OE端子用导线相连接。
e)把“单片机系统”区域中的P3.2与“模数转换模块”区域中的EOC端子用导线相连接。
f)把“单片机系统”区域中的P3.3与“模数转换模块”区域中的CLK端子用导线相连接。
g)把“模数转换模块”区域中的A2A1A0端子用导线连接到“把其他形式的能转换成电能的装置叫做电源">电源模块”区域中的GND端子上。
h)把“模数转换模块”区域中的IN0端子用导线连接到“三路可调电压">电压模块”区域中的VR1端子上。
i)把“单片机系统”区域中的P0.0-P0.7用8芯排线连接到“模数转换模块”区域中的D0D1D2D3D4D5D6D7端子上。
4.程序设计内容
i.由于ADC0809在进行转换为相应的数宇量的电路">A/D转换时需要有CLK信号,而此时的ADC0809的CLK是接在AT89S51单片机的P3.3端口上,也就是要求从P3.3输出CLK信号供ADC0809使用。因此产生CLK信号的方法就得用软件来产生了。
ii.由于ADC0809的参考电压VREF=VCC">CC,所以转换之后的数据要经过数据处理,在数码管">数码管上显示出电压值。实际显示的电压值(D/256*VREF)
5.汇编源程序
(略)
6.C语言源程序
#include<AT89X52.H>
unsignedcharcodedispbitcode[]={0xfe,0xfd,0xfb,0xf7,
0xef,0xdf,0xbf,0x7f};
unsignedcharcodedispcode[]={0x3f,0x06,0x5b,0x4f,0x66,
0x6d,0x7d,0x07,0x7f,0x6f,0x00};
unsignedchardispbuf[8]={10,10,10,10,0,0,0,0};
unsignedchardispcount;
unsignedchargetdata;
unsignedinttemp;
unsignedchari;
sbitST=P3^0;
sbitOE=P3^1;
sbitEOC=P3^2;
sbitCLK=P3^3;
voidmain(void)
{
ST=0;
OE=0;
ET0=1;
ET1=1;
EA=1;
TMOD=0x12;
TH0=216;
TL0=216;
TH1=(65536-4000)/256;
TL1=(65536-4000)%256;
TR1=1;
TR0=1;
ST=1;
ST=0;
while(1)
{
if(EOC==1)
{
OE=1;
getdata=P0;
OE=0;
temp=getdata*235;
temp=temp/128;
i=5;
dispbuf[0]=10;
dispbuf=10;
dispbuf=10;
dispbuf=10;
dispbuf[4]=10;
dispbuf[5]=0;
dispbuf[6]=0;
dispbuf[7]=0;
while(temp/10)
{
dispbuf[i]=temp%10;
temp=temp/10;
i++;
}
dispbuf[i]=temp;
ST=1;
ST=0;
}
}
}
voidt0(void)interrupt1using0
{
CLK=~CLK;
}
voidt1(void)interrupt3using0
{
TH1=(65536-4000)/256;
TL1=(65536-4000)%256;
P1=dispcode[dispbuf[dispcount]];
P2=dispbitcode[dispcount];
if(dispcount==7)
{
P1=P1|0x80;
}
dispcount++;
if(dispcount==8)
{
dispcount=0;
}
}
㈤ 用单片机设计一个量程自动切换的数字电压表
参考资料: 摘要电学参数测量技术涉及范围广,特别是微电压、微电流、高电压以及待测信号强弱相差极大的情况下,既要保证弱信号的测量精度又要兼顾强信号的测量范围,在技术上有一定的难度。传统的低成本仪表在测量电压、电阻时都采用手动选择档位的方法来转换量程。在使用中,当忘记转换档位时,会造成仪表测量精度下降或损坏。 现代电子测量对系统的精度要求越来越高且智能化程度也越来越高。全量程无档自动量程转换电压表和电阻表是在保证测量精度不下降的前提条件下省去手动转换量程的工作,得到了广泛应用。本文介绍了一种基于AT89S52单片机的智能多用表。该表能在单片机的控制下完成直流电压、电阻和直流电流的测量。测量电流部分采用了简单的I/V转换电路完成测试;测量电压部分结合模拟开关CD4051和运算放大器OP07构成程控放大器,实现了自动量程转换;测量电阻部分也由模拟开关CD4051和运算放大器OP07相结合,在单片机控制下完成了自动量程转换。电流、电压和电阻的最终测量信号都在单片机的控制下由12位A/D转换器TLC2543进行采集,采集的信号经单片机数据处理后通过LCD(12864)显示出来,测量结果还可以由带有串行EEPROM的CPU存储器和监控器的X25045进行多个数据保存。关键词:TLC2543 自动量程转换 程控增益放大器 电压电阻电流目录摘要1Abstract 2第一章绪论 51. 1概述 51. 2智能仪器/仪表国内外发展概况 51. 3课题研究目的及意义 6第二章系统结构及功能介绍 82. 1系统功能和性能指标 82. 1. 1仪表功能 82. 1. 2性能指标 82. 1. 3本机特色 82. 1. 4系统使用说明 92. 2系统工作原理概述 9第三章方案设计与论证 113. 1量程选择的设计与论证 11
㈥ 基于单片机的数字电压表设计 (请不要完成抄袭)
我给你看看我以前做过的数字电压表,汇编的
COM EQU 50H ;指令寄存器
DAT EQU 51H ;数据寄存器
RS EQU P2.1 ;LCD寄存器选择信号
RW EQU P2.2 ;LCD读/写选择信号
E EQU P2.3 ;LCD使能信号
ORG 0000H
LJMP MAIN ;主程序入口地址
ORG 000BH
LJMP BT0 ;T0中断入口
ORG 0030H ;主程序,初始化
MAIN:
MOV SP,#60H
LCALL INT
MOV 30H,#30H ;电压整数位
MOV 31H,#02EH ;小数点位
MOV 32H,#30H ;小数个位
MOV 33H,#30H ;小数十位
MOV 34H,#30H ;小数百位
MOV 35H,#56H ;字符"V"
MOV R7,#30H
LCALL STR0 ;显示字符串0
LCALL DELAY
LCALL STR1 ;显示字符串1
LCALL DELAY
LCALL N2 ;显示Voltage=0.000V
;***********定时器初始化程序***********
MOV TMOD,#00H ;定时器T0设为方式0
MOV TH0,#00H ;装入定时常数定时100us
MOV TL0,#00H
SETB TR0 ;启动T0
MOV 24H,#08H;装入T0中断次数
MOV IE,#82H ;开中断
LP:
MOV R7,#30H ;显示缓冲区首地址
LCALL DISPLY
SJMP LP ;循环显示
LED1:CLR P3.0
RET
DISPLY: ;LCD显示子程序
MOV COM,#0CAH
LCALL PR1
MOV DAT,30H
LCALL PR2
MOV DAT,31H
LCALL PR2
MOV DAT,32H
LCALL PR2
MOV DAT,33H
LCALL PR2
MOV DAT,34H
LCALL PR2
MOV DAT,35H
LCALL PR2
RET
STR0:
MOV COM,#01H
LCALL PR1
MOV COM,#06H
LCALL PR1
MOV COM,#090H ;设置DDRAM地址
LCALL PR1 ;调写指令代码子程序
MOV DPTR,#TAB4
MOV R2,#16
MOV R3,#00H
WRIN0:
MOV A,R3
MOVC A,@A+DPTR
MOV DAT,A
LCALL PR2
INC R3
DJNZ R2,WRIN0
MOV COM,#0D0H
LCALL PR1
MOV DPTR,#TAB5
MOV R2,#16
MOV R3,#00H
WRIN1:
MOV A,R3
MOVC A,@A+DPTR
MOV DAT,A
LCALL PR2
INC R3
DJNZ R2,WRIN1
MOV R3,#10H
ZUOYI:
MOV COM,#18H
LCALL PRX
DJNZ R3,ZUOYI
LCALL DELAY00
LCALL DELAY00
LCALL DELAY00
LCALL DELAY00
RET
RET
STR1:
MOV COM,#01H ;LCD清0命令
LCALL PR1 ;调写指令代码子程序
MOV COM,#06H ;输入方式命令,光标右移
LCALL PR1 ;调写指令代码子程序
MOV COM,#40H
LCALL PR1
MOV R5,#20H
MOV DPTR,#ZI
MOV R4,#0
LOOP1:MOV A,R4
MOVC A,@A+DPTR
MOV DAT,A
LCALL PR2
INC R4
DJNZ R5,LOOP1
MOV COM,#80H
LCALL PR1
MOV DPTR,#TAB2
MOV A,#00H
MOVC A,@A+DPTR
MOV DAT,A
LCALL PR2
MOV A,#01H
MOV DPTR,#TAB2
MOVC A,@A+DPTR
MOV DAT,A
LCALL PR2
MOV A,#02H
MOV DPTR,#TAB2
MOVC A,@A+DPTR
MOV DAT,A
LCALL PR2
MOV A,#03H
MOV DPTR,#TAB2
MOVC A,@A+DPTR
MOV DAT,A
LCALL PR2
MOV R1,#00H
MOV R0,#0dH
MOV DPTR,#TAB3
LOOP2:MOV A,R1
MOVC A,@A+DPTR
MOV DAT,A
LCALL PR2
INC R1
DJNZ R0,LOOP2
RET
N2: MOV COM,#0C0H
LCALL PR1
MOV DPTR,#TAB1
MOV R2,#10
MOV R3,#00H
WRIN:
MOV A,R3
MOVC A,@A+DPTR
MOV DAT,A
LCALL PR2
INC R3
DJNZ R2,WRIN
RET
TAB1: DB "VOLTAGE = "
TAB2: DB 00H
DB 01H
DB 02H
DB 03H
DB 04H
DB 05H
TAB3:DB "10701 tcw "
ZI: DB 009H,00AH,00CH,01FH,00CH,00AH,00CH,009H
DB 004H,004H,01FH,004H,00AH,00AH,011H,000H
DB 004H,004H,01FH,01FH,01FH,004H,007H,000H
DB 004H,00EH,010H,00EH,000H,00EH,003H,000H
TAB4:DB " welcome ! "
TAB5:DB "DESIGN BY tcw"
TAB6:DB "123456"
;********************************************************************
;定时器T0中断服务子程序,读取ADC0809第0通道的A/D转换结果并化为显示值*
;********************************************************************
BT0:
PUSH ACC
PUSH PSW
MOV PSW,#08H
CLR TR0
MOV TH0,#00H ;重新装入初值
MOV TL0,#00H
DEC 24H
MOV A,24H
JNZ RTN1
MOV 24H,#08H
LCALL ADC
RTN1: SETB TR0
POP PSW
POP ACC
RETI
ADC:
MOV DPTR,#0F6FFH
MOV A,#0 ;选择通道0
MOVX @DPTR,A ;启动AD转换
MOV A,#40H
DJNZ ACC,$
MOVX A,@DPTR
MOV 22H,A
MOV 21H,#0CCH
CJNE A,21H,BJ0
BJ0:JNC LED
SJMP LL0
LL0:SETB P3.0
SJMP LL
LED:LCALL LED1
LL: MOV A,22H
MOV B,#05H ;A/D转换结果化为显示值
MUL AB ;(AD*5)/256
MOV 30H,B ;AD*5的高字节为整数部分
MOV B,#0AH
MUL AB ;AD*5的低字节为/256的结果,为小数部分
MOV 32H,B ;二进制小数换为10进制数
MOV B,#0AH
MUL AB
MOV 33H,B
MOV B,#0AH
MUL AB
MOV 34H,B
MOV A,30H
MOV DPTR,#TAB
MOVC A,@A+DPTR
MOV 30H,A
MOV A,32H
MOVC A,@A+DPTR
MOV 32H,A
MOV A,33H
MOVC A,@A+DPTR
MOV 33H,A
MOV A,34H
MOVC A,@A+DPTR
MOV 34H,A
RET
TAB: DB "0123456789"
;*****************************************
;****LCD间接控制方式下的初始化子程序******
;*****************************************
INT:
LCALL DELAY
MOV COM,#38H ;设置工作方式
LCALL PR1
MOV COM,#01H
LCALL PR1
MOV COM,#06H
LCALL PR1
MOV COM,#0CH
LCALL PR1
RET
DELAY: ;延时子程序
MOV R6,#0FH
MOV R7,#00H
DELAY1:
NOP
DJNZ R7,DELAY1
DJNZ R6,DELAY1
RET
DELAY00: ;延时子程序
MOV R6,#0FFH
MOV R7,#0FFH
DELAY0:
NOP
DJNZ R7,DELAY1
DJNZ R6,DELAY1
RET
;*********************************************
;*******LCD间接控制方式下的驱动子程序*********
;*********************************************
;2 写指令代码子程序
PRX:
PUSH ACC
CLR RS
SETB RW
PR110:
MOV P0,#0FFH
SETB E
LCALL DELAY00
NOP
MOV A,P0
CLR E
JB ACC.7,PR11
CLR RW
MOV P0,COM
SETB E
CLR E
POP ACC
RET
PR1:
PUSH ACC
CLR RS
SETB RW
PR11:
MOV P0,#0FFH
SETB E
LCALL DELAY
NOP
MOV A,P0
CLR E
JB ACC.7,PR11
CLR RW
MOV P0,COM
SETB E
CLR E
POP ACC
RET
;3 写显示数据子程序
PR2:
PUSH ACC
CLR RS
SETB RW
PR21:
MOV P0,#0FFH
SETB E
LCALL DELAY
MOV A,P0
CLR E
JB ACC.7,PR21
SETB RS
CLR RW
MOV P0,DAT
SETB E
CLR E
POP ACC
RET
END
㈦ 利用单片机AT89C51与ADC0808设计一个数字电压表,能够测量0~5V的直流电压值,精度越高越好
本文介绍了用ADC0808集成电压转换芯片和AT89C51单片机设计制作的数字直流电压表。在测量仪器中,电压表是必须的,而且电压表的好坏直接影响到测量精度。具有一个精度高、转换速度快、性能稳定的电压表才能符合测量的要求。为此,我们设计了数字电压表,此作品主要由A/D0808转换器和单片机AT89C51构成,A/D转换器在单片机的控制下完成对模拟信号的采集和转换功能,最后由数码管显示采集的电压值。此设计通过调试完全满足设计的指标要求。电路设计简单,设计制作方便有较强的实用性。
关键词:
ADC0808;单片机AT89C51;数字电压表
Abstract:
In this paper, with ADC0808 voltage converter integrated chips and microcontroller designed AT89C51 the number of DC voltage table. In measuring instruments, voltage meter is necessary, and voltage meter will have a direct impact on measurement accuracy. With a high precision, the conversion speed and stable performance of the voltage meter to conform to the requirements of measurement. To this end, we design a digital voltage meter, this works mainly by A/D0808 converter and a microcontroller AT89C51, A / D converter under the control of the MCU to complete the acquisition and analog signal conversion functions, from the final Acquisition of the digital display voltage value. This design through debugging to fully meet the design requirements of the target. Circuit design simple, designed to facilitate a more practical.
Key words:
ADC0808; SCM AT89C51; Digital Voltmeter
目 录
1.设计方案……………………………………………………………………………………1
2. 系统硬件设计……………………………………………………………………………2
2.1单片机芯片……………………………………………………………………………2
2.1.1.单片机芯片选择……………………………………………………………2
2.1.2.单片机管脚说明……………………………………………………………3
2.2.A/D转换器……………………………………………………………………………5
2.2.1.A/D转换器芯片选择………………………………………………………5
2.2.2.A/D转换器管脚说明………………………………………………………6
2.3.电压显示电路…………………………………………………………………………7
3.系统程序设计……………………………………………………………………………………8
3.1.软件总体框架设计……………………………………………………………………8
4.系统总图及程序…………………………………………………………………………………9
5.参考文献………………………………………………………………………………………………12
6.结束语……………………………………………………………………………………………………13
1.设计方案
在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流或交流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、灵敏度高和分辨率高、测量速度快等特点而倍受青睐。本设计从各个角度分析了由单片机组成的数字电压表的设计过程及各部分电路的组成及其原理,并且分析了程序如何驱动单片机进而使系统运行起来的原理及方法。框图如下:
本设计主要分为两部分:硬件电路及软件程序。而硬件电路又大体可分为A/D转换电路、LED显示电路,各部分电路的设计及原理将会在硬件电路设计部分详细介绍;程序的设计使用汇编语言编程,利用WAVE和PROTEUS 软件对其编译和仿真,详细的设计算法将会在程序设计部分详细介绍。
2.系统硬件电路设计
2.1 单片机芯片
2.1.1.单片机芯片选择
AT89C51简介
AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。外形及引脚排列如图所示
图2.1_1 AT89C51引脚图
2.1.2.单片机管脚说明
主要特性:
?与MCS-51 兼容
?4K字节可编程闪烁存储器
?寿命:1000写/擦循环
?数据保留时间:10年
?全静态工作:0Hz-24Hz
?三级程序存储器锁定
?128×8位内部RAM
?32可编程I/O线
?两个16位定时器/计数器
?5个中断源
?可编程串行通道
?低功耗的闲置和掉电模式
?片内振荡器和时钟电路
管脚接法说明:
VCC:供电电压我们接+5V。
GND:接地。
P0口:在这个设计中我们将AT89C51做为BCD码的输出口与LED显示器相连。由于P0口输出驱动电路中没有上拉电阻,所以我们在外接电路上接上拉电阻。
P1口:把AT89C51中的P1口与ADC0808的输出端相连,做为数字信号的接收端。
P2口:我们把P2口做为位码输出口,以P2.0—2.3输出位控线与LED显示器相连.
P3口:利用P3.0,P3.1,P3.2,P3.4,P3.5,P3.6分别与ADC0808的OE,EOC,START/ALE,A,B,C端相连。
XTAL1 ,XTAL2:外接一振荡电路。
图2.1.2 振荡电路
RST:在此端接一复位电路。
图2.1.3 复位电路
2.2 A/D转换器与单片机接口电路
2.2.1.A/D转换器芯片选择
A/D转换器是模拟量输入通道中的一个环节,单片机通过A/D转换器把输入模拟量变成数字量再处理。
随着大规模集成电路的发展,目前不同厂家已经生产出了多种型号的A/D转换器,以满足不同应用场合的需要。如果按照转换原理划分,主要有3种类型,即双积分式A/D转换器、逐次逼近式A/D转换器和并行式A/D转换器。目前最常用的是双积分和逐次逼近式。
双积分式A/D转换器具有抗干扰能力强、转换精度高、价格便宜等优点,比如ICL71XX系列等,它们通常带有自动较零、七段码输出等功能。与双积分相比,逐次逼近式A/D转换的转换速度更快,而且精度更高,比如ADC0808、ADC0809等,它们通常具有8路模拟选通开关及地址译码、锁存电路等,它们可以与单片机系统连接,将数字量送入单片机进行分析和显示。
本设计中,由于对精度没做很大要求,我们采用逐次逼近式A/D转换ADC0808,精度为0.02,所以四位LED显示中的最后一位我们设置为V。
图2.2.1 ADC0808引脚图
2.2.2.A/D转换器ADC0808的管脚说明:
IN0~IN7:为模拟量的输入口,我们选取IN3口为入口,外接可变电阻,通过改变阻值来控制模拟量的输入。
A、B、C:3位地址输入,2个地址输入端的不同组合选择八路模拟量输入。这里我们将A,B接高电平,C为低电平。
ALE:地址锁存启动信号,在ALE的上升沿,将A、B、C上的通道地址锁存到内部的地址锁存器。
D0~D7:八位数据输出线,A/D转换结果由这8根线传送给单片机。
OE:允许输出信号。当OE=1时,即为高电平,允许输出锁存器输出数据。
START:启动信号输入端,START为正脉冲,其上升沿清除ADC0808的内部的各寄存器,其下降沿启动A/D开始转换。
EOC:转换完成信号,当EOC上升为高电平时,表明内部A/D转换已完成。
CLK:时钟输入信号,选用频率500KHZ。
图2.2.2 时钟信号
2.3 电压显示电路:
设计中采用的是4段LED数码管来显示电压值。LED具有耗电低、亮度高、视角大、线路简单、耐震及寿命长等优点,它由4个发光二极管组成,其中3个按‘8’字型排列,另一个发光二极管为圆点形状,位于右下角,常用于显示小数点。把4个发光二极管连在一起,公共端接高电平,叫共阳极接法,相反,公共端接低电平的叫共阴极接法,我们采用共阴极接法。当发光二极管导通时,相应的一段笔画或点就发亮,从而形成不同的发光字符。其8段分别命名为dp g f e d c b a。例如,要显示“0”,则dp g f e d c b a分别为:00111111B;若要显示多个数字,只要让若干个数码管的位码循环为高电平就可以了。
根据设计要求,显示电路需要至少4位LED数码管来显示电压值,我们再多加一位用来显示电压单位“V”,则有7位LED循环显示。利用单片机的I/O口驱动LED数码管的亮灭,设计中由P0口驱动LED的段码显示,即显示字符,由P2口选择LED位码,即选择点
亮哪位LED来显示。
图2.3 LED管
另外,一般I/O接口芯片的驱动能力是很有限的,在LED显示器接口电路中,输出口所能提供的驱动电流一般是不够的尤其是设计中需要用到多位LED,此时就需要增加LED驱动电路。驱动电路有多种,常用的是TTL或MOS集成电路驱动器,在本设计中采用了ADC0808芯片驱动电路。
3.系统程序设计
3.1软件总体框架设计
在编写汇编语言时,先存放数码管的段码,再存放转换后的数据,选取通道并设值.再将AD转换结果转换成BCD码,通过换算LED上显示.
再换算中,利用关系得到LED上个位,十位,百位的显示,然后设置小数点:
开始
预设初值
选取通道3
启动A/D转换
否
是
数码显示子程序
延时显示结果
结束
在系统上电开始测量前,要用万用表的电压档对被测电压进行估测,然后再测。
4.系统总图及程序
LED_0 EQU 30H;
LED_1 EQU 31H;
LED_2 EQU 32H;
LED_3 EQU 33H;
ADC EQU 35H;
ST BIT P3.2;
OE BIT P3.0;
EOC BIT P3.1;
ORG 00H;
START: MOV LED_0,#00H;
MOV LED_1,#00H;
MOV LED_2,#00H;
MOV LED_3,#00H;
MOV DPTR,#TABLE;
SETB P3.4;
SETB P3.5;
CLR P3.6;
WAIT: CLR ST;
SETB ST;
CLR ST;
JNB EOC,$;
SETB OE;
MOV ADC,P1;
CLR OE;
MOV A,ADC;
MOV B,#51;
DIV AB;
MOV LED_3,A;
MOV A,B;
MOV B,#5;
DIV AB;
MOV LED_2,A;
MOV LED_1,B;
LCALL DISP;
SJMP WAIT;
DISP: MOV A,#3EH;
CLR P2.3;
MOV P0,A;
LCALL DELAY;
SETB P2.3;
MOV A,LED_1;
MOVC A,@A+DPTR;
CLR P2.2;
MOV P0,A;
LCALL DELAY;
SETB P2.2;
MOV A,LED_2;
MOVC A,@A+DPTR;
CLR P2.1;
MOV P0,A;
LCALL DELAY;
SETB P2.1;
MOV A,LED_3;
MOVC A,@A+DPTR;
ORL A,#80H;
CLR P2.0;
MOV P0,A;
LCALL DELAY;
SETB P2.0;
RET;
DELAY: MOV R6,#10;
D1: MOV R7,#250;
DJNZ R7,$;
DJNZ R6,D1;
RET
TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,
END
数字直流电压表的总图
㈧ 基于AT89C51单片机的数字电压表的设计,不能使用AD转换芯片,AD转换电路只能自己搭。
AT89C51单片机内部没有AD转换模块,可以通过IO口扩展AD转换芯片现在市面上很多这种芯片比如TLC2543、ads1204就是,如果电压表精度要求不高,用后出来的单片机内部就集成了AD转换芯片比如avr、PIC等。