A. 基于单片机温度测量与控制 毕业论文
摘要
本设计的温度测量计加热控制系统以AT89S52单片机为核心部件,外加温度采集电路、键盘显示电路、加热控制电路和越限报警等电路。采用单总梁圆线型数字式的温度传感器DSI8B20,及行列式键盘和动态显示的方式,以容易控制的固态继电器作加热控制的开关器件。本作品既可以对当前温度进行实时显示又可以对温度进行控制,以使达到用户需要的温度,并使其恒定再这一温度。人性化的行列式键盘设计使设置温度简单快速,两位整数一位小数的显示方式具有更高的显示精度。建立在模糊控制理论控制上的控制算法,是控制精度完全能满足一般社会生产的要求。通过对系统软件和硬件设计的合理规划,发挥单片机自身集成众多系统及功能单元的优势,再不减少功能的前提下有效的降低了硬件的成本,系统操控更简便。
实验证明该温控系统能达到0.2℃的静态误差,0.45℃的控制精度,以及只有0.83%的超调量,因本设计具有很高的可靠性和稳定性。
关键词:单片机 恒温控制 模糊控制
引言
温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。 采用单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。MSP430系列单片机具有处理能强、运行速度快、功耗低等优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。
温度传感器将温度信息变换为模拟电压信号后,将电压信号放大到单片机可以处理的范围内,经过低通滤波,滤掉干扰信号送入单片机。在单片机中对信号进行采样,为进一步提高测量精度,采样后对信号再进行数字滤波。单片机将检测到的温度信息与设定值进行比较,如果不相符,数字调节程序根据给定值与测得值的差值按PID控制算法设计控制量,触发程序根据控制量控制执行单元。如果检测值高于设定值,则启动制冷系统,降低环境温度;如果检测值低于设定值,则启动加热系统,提高环境温度,达到控制温度的目的。
图形点阵式液晶可显示用户自定义的任意符号和图形,并可卷动显示,它作为便携式单片机系统人机交互界面的重要组成部分被广泛应用于实时检测和显示的仪器仪表中。支持汉字显示的图形点阵液晶在现代单片机应用系统中是一种十分常用的显示设备,汉字BP机、手机上的显示屏就是图形点阵液晶。它与行列式小键盘组成了现代单片机应用系统中最常用的人机交互界面。
本文设计了一种基于MSP430单片机的温度测量和控制装置,能对环境温度进行测量,并能根据温度给定值给出调节量,控制执行机构,实现调节环境温度的目的。
━、硬件设计
1:MSP430系列单片机简介及选型
单片机即微控制器,自其开发以来,取得了飞速的发展。单片机控制系统在工业、交通、医疗等领域的应用越来越广泛,在单片机未开发之前,电子产品只能由复杂的模拟电路来实搏枯现,不仅体积大,成本高,长期使用后元件老化,控制精度大大降低,单片机开发以后,控制系统变为智能化了,只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完橡银塌成。这样产品体积变小了,成本也降低了,长期使用也不会担心精度达不到了。特别是嵌入式技术的发展,必将为单片机的发展提供更广阔的发展空间,近年来,由于超低功耗技术的开发,又出现了低功耗单片机,如MSP430系列、ZK系列等,其中的MSP430系列单片机是美国德州仪器(TI)的一种16位超低功耗单片机,该单片机
B. 温度控制系统的硬件毕业论文设计
基于MCS-51单片机温控系统设计的电阻炉论文字数:17255.页数:42 论文编号:JD471
摘 要
近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用。 单片机是随着超大规模集成电路技术的发展而诞生的。由于它具有体积小、功能强、性价比高等特点。把单片机应用于温度控制中,采用单片机做主控单元,无触点控制,可完成对温度的采集和控制的要求。所以广泛应用于电子仪表、家用电器、节能装置、机器人、工业控制等诸多领域,使产品小型化、智能化,既提高了产品的功能和质量,又降低了成本,简化了设计。
周期作业式的电阻炉,可供实验室、工矿企业、科研单位作元素分析测定和一般小型钢件淬火、退火、回火等热处理时加热用。原电阻炉需与温度控制器配套使用,由检测端的热电偶信号输送给温度指示调节仪,继而控制接触器对电阻炉供电,实现电阻炉温的测量、指示及自动控制。电阻炉温波动较大,控制精度低。
本文主要介绍单片机在电阻炉温控中的应用,对温度控制模块的组成及主要所选器件进行了详细的介绍。并根据具体的要求本文编写了适合本设计的软件程序。关键词:单片机;电阻炉;炉温;控制系统 目 录
摘要………………………………………………………………………………… Ⅰ
Abstract…………………………………………………………………………Ⅱ
第1章 绪论…………………………………………………………………………1
1.1 课题背景……………………………………………………………………1
1.2 MCS-51系列单片机………………………………………………………2
第2章 总体设计电路图及工作原理…………………………………………… 5
2.1 总体方案设计………………………………………………………………5
2.2 电阻炉的单片机温控原理…………………………………………………7
第3章 系统硬件设计…………………………………………………………… 11
3.1 系统硬件电路设计……………………………………………………… 11
3.2 硬件设计电路原理图…………………………………………………… 13
3.3 各元件说明……………………………………………………………… 19
第4章 系统软件设计…………………………………………………………… 22
4.1 编程思路………………………………………………………………… 22
4.2 编程流程图……………………………………………………………… 23
第5章 MCS-51单片机温控电阻炉技术特性…………………………………… 25
总结………………………………………………………………………………… 26
致谢………………………………………………………………………………… 27
参考文献…………………………………………………………………………… 28
附录…………………………………………………………………………………29
附录1 硬件设计的电路…………………………………………………… 29
附录2 程序………………………………………………………………… 30
附录3 外文翻译…………………………………………………………… 38以上回答来自: http://www.lwtxw.com/html/42-2/2774.htm
C. 基于单片机的温度控制系统(毕业论文)
必须要有实物啊,理论的东西都是要靠实物来验证的啊。温度控制系统不难吧,学过电子、单片机的都很轻松的,同学看来你大学过得还挺滋润的啊。去文库看看,基本都会有资料参考的。知识要点:
1,AD采样,
也就是温度的数据采集。2,中断,
采集数据后比较,做相应的处理。
D. 我是机电专业的学生,快要毕业了,我的毕业论文题目是基于51单片机的温度控制系统设计
第1章 硬件电路分析
第1.1节 硬件电路概述该测温系统由五部分组成:电源模块、侦测模块、显示模块、控制模块、通讯模块。电源模块完成将200V,50Hz市电转换为稳定的直流+5V电源的任务,包含变压、整流、滤波和稳压四部分,其中稳压部分采用LM7805集成块。串口通信模块的任务是实现单片机与计算机的通信,通过软件将程序下载至单片机中进行运行调试
以上内容来自5173论文网 http://www.lw5173.com/article/html/4627.html 点击参考更多
E. 基于单片机的自动温控系统的设计.毕业论文开题报告
热电致冷器件特别适合于小热量和受空间限制的温控领域。改变加在器件上的直流电的极性即可变致冷为加热,而吸热或放热率则正比于所加直流电流的大小。Pe1tier 温控器的设定温度可以在一个较宽的范围内任意选择,可选择低于或高于环境温度。
在本系统中我们选用了天津蓝天高科电源有限公司生产的半导体致冷器件 TES1-12739,其最大温差电压 14.7V,最大温差电流3.9A最大致冷功率33.7W。
1.5 其它部分
系统采用Samsung(三星)公司生产的真空荧光数码显示屏 VFD用来实时显示当前温度,以观察控制效果。键盘和串行通信接口用来设定控制温度和调整PID参数。系统电路原理图如图3所示。
2 系统软件设计
系统开始工作时,首先由单片机控制软件发出温度读取指令,通过数字温度传感器 DS18B20 采样被控对象的当前温度值T1并送显示屏实时显示。然后,将该温度测量值与设定值T比较,其差值送 PID控制器。PID 控制器处理后输出一定数值的控制量,经DA 转换为模拟电压量,该电压信号再经大电流驱动电路,提高电流驱动能力后加载到半导体致冷器件上,对温控对象进行加热或制冷。加热或制冷取决于致冷器上所加电压的正负,若温控对象当前温度测量值与设定值差值为正,则输出负电压信号,致冷器上加载负电压温控对象温度降低;反之,致冷器上加载正向电压,温控对象温度升高。上述过程:温度采样-计算温差-PID调节-信号放大输出周而复始,最后将温控对象的温度控制在设定值附近上下波动,随着循环次数的增加,波动幅度会逐渐减小到某一很小的量,直至达到控制要求。为了加快控制,在进入PID控制前加入了一段温差判断程序。当温度差值大于设定阈值Δt时,系统进行全功率加热或制冷,直到温差小于Δt才进入PID控制环节。图4为系统工作主程序的软件流程图.
3 结论
本文设计的基于单片机数字PID控制的精密温度控制系统,在实际应用中取得了良好的控制效果,温度控制精度达到±0.1℃。经48小时连续运行考验,系统工作稳定,有效地降低了辐亮度标准探测器的温度系数,使辐亮度标准探测器在温度变化较大的环境中也能保持其高精度,为实现基于探测器的高精度辐射定标的广泛应用奠定了基础。
本文作者创新点:在原来基于PC的PID温控系统的基础上,设计了由单片机、数字式温传感器DS18B20和半导体致冷器组成的精密温度控制系统。该温控系统的应用为高精度光辐射测量仪器-辐亮度标准探测器的小型化、智能化提供了有利条件。
F. 基于单片机的热水器温度控制系统
东华理工大学毕业设计(论文)
基于单片机的热水器温度控制
摘 要
温度是日常生活中不可缺少的物理量,温度在各个领域都有积极的意义。很多行业中以及日常生活中都有大量的用电加热设备,如用于加热处理的加热热水器,用于洗浴的电热水器及各种不同用途的温度箱等,采用单片机对它们进行控制具有控制方便、简单、灵活性大等特点,而且还可以大幅提高被控系统的性能,从而能被大大提高产品的质量。因此,智能化温度控制技术正被广泛地应用。
本温度设计采用现在流行的AT89C51单片机为控制器,用PID控制方法,再配以其他电路对热水器的水温进行控制。
关键词:89C51; PID; 温度控制
I
1/41页
东华理工大学毕业设计(论文)
ABSTRACT
Temperature is essential physical in daily life ,and in various fields has positive implications.A lot of businesses and daily lives have a lot of electric heating equipment.Such as electric water heater for bathing and variety of different uses of the temperature boxes. MCU to control them with easy to control,simple,flexibility and other characteristics,also can significantly improve the performance of the controlled system,which can be greatly improved proct quality. Therefore,intelligent temperature control technology is being widely used.
The temperature control design uses the now popular AT89C51 MCU controller,with PID control method, which together with
G. 论文单片机温度控制系统的(程序清单)!!!!急!!!!
本设计的温度测量及加热控制系统以 AT89S52 单片机为核心部件,外加温度采集电
路、键盘及显示电路、加热控制电路和越限报警等电路。采用单总线型数字式的温度传
感器 DS18B20,及行列式键盘和动态显示的方式,以容易控制的固态继电器作加热控制
的开关器件。本作品既可以对当前温度进行实时显示又可以对温度进行控制,以使达到
用户需要的温度,并使其恒定在这一温度。人性化的行列式键盘设计使设置温度简单快
速,两位整数一位小数的显示方式具有更高的显示精度。建立在模糊控制理论上的控制
算法,使控制精度完全能满足一般社会生产的要求。通过对系统软件和硬件设计的合理
规划,发挥单片机自身集成众多系统级功能单元的优势,在不减少功能的前提下有效降
低了硬件成本,系统操控简便。
实验证明该温控系统能达到 0.2℃的静态误差,0.45℃的控制精度,以及只有 0.83%
的超调量,因而本设计具有很高的可靠性和稳定性。
关键 词: 单片机 恒温控制 模糊控制
1
引 言
温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于
冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有
些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度
控制系统是非常有价值的。
硬件 系统的设计
1、电路总体原理框图
温度测量及加热系统控制的总体结构如图 1 所示。系统主要包括现场温度采集、实
时温度显示、加热控制参数设置、加热电路控制输出、与报警装置和系统核心 AT89S52
单片机作为微处理器。
图 1:系统总体原理框图
温度采集电路以数字量形式将现场温度传至单片机。单片机结合现场温度与用户设
定的目标温度,按照已经编程固化的模糊控制算法计算出实时控制量。以此控制量控制
固态继电器开通和关断,决定加热电路的工作状态,使水温逐步稳定于用户设定的目标
值。在水温到达设定的目标温度后,由于自然冷却而使其温度下降时,单片机通过采样
回的温度与设置的目标温度比较,作出相应的控制,开启加热器。当用户需要比实时温
度低的温度时,此电路可以利用风扇降温。系统运行过程中的各种状态参量均可由数码
管实时显示。
2、温度采集电路的设计
温度采集电路模块如图 2 示。DS18B20 内部结构主要由四部分组成:64 位光刻 ROM、
温度传感器、非挥发的温度报警触发器 TH 和 TL、配置寄存器。其中 DQ 为数字信号输
入/输出端;GND 为电源地;VDD 为外接供电电源输入端。
2
图 2:温度采集电路
DS18B20 中的温度传感器可完成对温度的测量,以 12 位转化为例:用 16 位符号扩展
的二进制补码读数形式提供,以 0.0625℃/LSB 形式表达,其中 S 为符号位。
这是 12 位转化后得到的 12 位数据,存储在 18B20 的两个 8 比特的 RAM 中,二进
制中的前面 5 位是符号位,如果测得的温度大于 0,这 5 位为 0,只要将测到的数值乘
于 0.0625 即可得到实际温度;如果温度小于 0,这 5 位为 1,测到的数值需要取反加 1
再乘于 0.0625 即可得到实际温度。
3、键盘和显示的设计
键盘采用行列式和外部中断相结合的方法,图 3 中各按键的功能定义如下表 1。其
中设置键与单片机的 INT 0 脚相连,S 0 −−S 9 、YES、NO 用四行三列接单片机 P0 口,REST
键为硬件复位键,与 R、C 构成复位电路。模块电路如下图 3:
表 1:按键功能
按键 键名 功能
REST 复位键 使系统复位
RET 设置键 使系统产生中断,进入设置状态
S 0 −−S 9 数字键 设置用户需要的温度
YES 确认键 用户设定目标温度后进行确认
NO 清除键 用户设定温度错误或误按了 YES 键后使用
3
图 3 键盘接口电路
显示采用 3 位共阳 LED 动态显示方式,显示内容有温度值的十位、个位及小数点后
一位。用 P2 口作为段控码输出,并用 74HC244 作驱动。P1.0—P1.2 作为位控码输出,
用 PNP 型三极管做驱动。模块电路如下图 4:
4、加热控制电路的设计
图 4 显示接口电路
用于在闭环控制系统中对被控对象实施控制,被控对象为电热杯,采用对加在电热
杯两端的电压进行通断的方法进行控制,以实现对水加热功率的调整,从而达到对水温
控制的目的。对电炉丝通断的控制采用 SSR-40DA 固态继电器。它的使用非常简单,只
要在控制端 TTL 电平,即可实现对继电器的开关,使用时完全可以用 NPN 型三极管接
成电压跟随器的形式驱动。当单片机的 P1.3 为高点平时,三极管驱动固态继电器工作
接通加热器工作,当单片机的 P1.3 为低电平时固态继电器关断,加热器不工作。控制
电路图如下图 5:
4
图 5 加热控制电路
5、报警及指示灯电路的设计
当用户设定的目标温度达到时需用声音的形式提醒用户,此时蜂鸣器为三声断续的
滴答滴答的叫声。在本系统中我们为用户设计了越限报警,当温度低于用户设置的目标
温度 10 度或高于 10 度时蜂鸣器为连续不断的滴答滴答叫声。当单片机 P1.7 输出高电
平时,三极管导通,蜂鸣器工作发出报警声。P1.7 为低电平时三极管关断,蜂鸣器不
工作。
D1 为电热杯加热指示灯,P1.5 低电平有效;D0 为检测到 DS18B20 的指示,高电平
有效;D10 为降温指示灯,低电平有效。报警及指示灯电路如下图 6 示:
图 6 报警及指示灯电路
5
软 件系统的设计
系统的软件由三大模块组成:主程序模块、功能实现模块和运算控制模块。
1、主程序模块
主程序主要完成加热控制系统各部件的初始化和实现各功能子程序的调用,以及实
际测量中各个功能模块的协调在无外部中断申请时,单片机通过循环对外部温度进行实
时显示。把设置键作为外部中断 0,以便能对数字按键进行相应处理。主程序流程图如
下图 7:
6
图 7 主程序流程图
7
2、功能实现模块
以用来执行对固态继电器及电热杯的控制。功能实现模块主要由中断处理子程序、
温度比较处理子程序、键盘处理子程序、显示子程序、报警子程序等部分组成。键盘显
示及中断程序流程图如下图 8:
3、运算控制模块
图 8 键盘、显示、中断 子程序流程图
该模块由标度转换、模糊控制算法,及其中用到的乘法子程序。
3.1 标度转换
16
式中 A 为二进制的温度值, A0 为 DS18B20 的数字信号线送回来的温度数据。
8
单片机在处理标度转换时是通过把 DS18B20 的信号线送回的 16 位数据右移 4 位得
到二进制的温度值。其小数部分通过查小数表的形式获取。程序流程图如下图 9:
开始
将28H低4位与29H高4位组合成
一个字节
将合成的字节(整数部分)送29H
单元
将29H单元低4位送A
给DPTR赋常数表格2首地址
将查到的数值(即小数部分)送
30H单元
结束
3.2 模糊控制算法子程序
图 9 标度转换子程序流程图
该系统为一温度控制系统,由于无法确切确定电炉的物理模型,因而无法建立其数
学模型和传递函数。加热器为一惯性系统,我们采用模糊控制的方法,通过多次温度测
量模糊计算当用户设定目标温度时需提前关断加热器的温度,利用加热器自身的热惯性
使温度上升到其设定温度。每隔 5 摄氏度我们进行一次温度测量,并当达到其温度时关
断加热器记录下因加热器的热惯性而上升的温度值。从而可以建立热惯性的温度差值
表,在程序中利用查表法,查出相应设定温度对应的关断温度。通过实验数据我们可以
看出,当水温从 0℃加热到 50℃这段温度区域,其温度惯性曲线可近似成线性的直线,
水温从 50℃加热到 100℃这段温度惯性曲线可近似成另一条线性的直线段。通过对设置
的目标温度与温控系统监测温度进行差值处理就可近似的求出单片机的提前关断温度。
程序流程图如图 10:
9
4.源程序见附录[2]
图 10 模糊控制算法子程序流程图
设计 总结
我们的温度控制系统是基于 AT89S52 单片机的设计方案,她能实时显示当前温度,
并能根据用户的要求作出相应的控制。此系统为闭环系统,工作稳定稳定性高,控制精
度高,利用模糊控制算法使超调量大大降低。软件采用模块化结构,提高了通用性。本设
计的目的不仅仅是温度控制本身,主要提供了单片机外围电路及软件包括控制算法设计
的思想,应该说,这种思想比控制系统本身更为重要。
1、设计所达到的性能指标
1.1 温控系统的标度误差
我们将标准温度计和温控系统探头放人同一容器中,选定若干不同的温度点,记
录下标准温度计显示的温度和温控系统显示的温度进行比较。测量数据如下表 2 所示:
表 2 标准温度计测量的温度和温控系统显示的温度
标准温度计和温控系统显示的温度(℃)
标准温度计 16.9 47.7 57.8 63.0 72.8 85.1 90.9
温控系统 16.5 48.0 58.3 62.9 73.0 85.5 90.5
差值比较 -0.4 0.3 0.5 0.1 0.2 0.4 -0.4
标度误差 1.5%
10
1.2 温控系统的静态误差
通过测量在不同的温度点同标准温度的温度差来确定温控系统的静态误差。其测量
数据如下表 3:
表 3 标准温度和温控系统显示的温度
标准温度和温控系统显示的温度(℃)
标准温度 26.0 37.0 46.0 60.0 70.0 83.0
系统显示值 25.7 36.4 46.1 59.6 70.0 83.3
差值 -0.3 -0.6 -0.1 -0.4 0 0.3
静态误差 0.18℃
1.3 温控系统的控制精度
通过设定不同的温度值,使加热器加热,待温度稳定时记录各温度点的温度计数据
和温控系统的显示值。其记录数据如下表 4:
温度计读数和温控系统显示的温度(℃)
设定温度
值 20.0 28.0 35.0 45.0 55.0 75.0 87.0 91.0
系统显示
值 20.5 27.7 34.4 45.1 54.1 74.9 86.1 91.2
差值 0.5 -0.3 -0.6 0.1 -0.9 -0.1 -0.9 0.2
控制精度 0.45℃
超调量 0.83%
2、结果分析论述
我们的系统完全满足设计要求,静态误差方面可以达到 0.18℃的误差,在读数正确
方面与标准温度计的读数误差为 1.5%,对一般的工业生产完全可以采用我们的设计。
该系统具有较小的超调值,超调值大约为 0.83%左右。虽然超调为不利结果,但另
一方面却减小了系统的调节时间。从其数据表可以看出该系统为稳定系统。
3、设计方案评价
3.1 优点
在硬件方面:本设计方案采用了单总线型数字式的温度传感器,提高了温度的采集
精度,节约了单片机的口线资源。方案还使用仅一跟口线就可控制的美国生产的固态继
电器 SSR—40DA 作加热控制器件,使设计简单化,且可靠性强。在控制精度方面,本设
计在不能确定执行机构的数学模型的情况下,大胆的假设小心的求证,利用模糊控制的
算法来提高控制精度。
在软件方面:我们采用模块化编程,思路清晰,使程序简洁、可移植性强。
3.2 缺点
本设计方案虽然采用了当前市场最先进的电子器件,使电路设计简单,但设计方案
造价高。本系统虽然具有较小的超调量,但加大了调节时间。如果需要更高的控制精度,
则我们的模糊控制将不适应,需修改程序。
11
3.3 方案的改进
在不改变加热器容量的情况下,为减小调节时间,可以实行在加热快达到设定温度
时开启风扇来减小热惯性对温度的影响的措施。在控制精度上可采用先进的数字 PID
控制算法,对加热时间进行控制,提高控制精度。
可以改进控制系统使能同 PC 联机通信,以利用 PC 的图形处理功能打印显示温度曲
线。AT89S52 串行口为 TTL 电平,PC 串行口为 RS232 电平,使用一片 MAX232 作为电
平转换驱动。
参考 文献
[1] 李广弟 单片机基础 北京:北京航空航天大学出版社,2001
[2] 王福瑞 单片微机测控系统设计大全 北京:北京航空航天大学出版社,1997
[3] 赵茂泰 智能仪器原理及应用(第 2 版) 北京:电子工业出版社,2004
[4] 赖寿涛 微型计算机控制技术 北京:机械工业出版社,2000
[5] 沙占友 模拟与数字万用表检测及应用技术 北京:电子工业出版社 1999
12
附 录
附录[1]使用说明书
按 键功能说明
数字键:按 SET 键后,按相应的数字键(0~9)可对温度进行设置,所设置的温
度将实时显示在 LED 显示器上;
SET 键:按 SET 键可对温度的十位、个位以及小数部分进行设置;
YES 键:设置好温度后按 YES 键,系统将据你所设置的温度(须大于当前实际
温度)对水进行加热;
NO 键:若误按了 SET 键,或对输入有误,可按 NO 键进行取消;
RST 键:对系统进行复位。
指示 灯及报警器说明
红 灯:加热状态标志;
绿 灯:温度传感器正常工作标志;
蓝 灯:保温状态标志;
报警器:功能①当水温达到预设值时报警提醒;
功能②当水温达到或超越上、下限时报警提示。
13
附录[2]设计总电路
14
附录[3]程序清单
TEMPER_L EQU 29H ;用于 保存读出温度的低 8 位
TEMPER_H EQU 28H ;用于 保存读出温度的高 8 位
FLAG EQU 38H ;是否 检测到 DS 18B20 标志位
DAYU EQU 44H ;设温 >实温
XIYU EQU 45H ;设温 <实温
DEYU EQU 46H ;设温 =实温
GAOLE EQU 47H ;水温 高于最高温度
DILE EQU 48H ;水温 低于最低温度
A_bit EQU 79h ;数码 管个位数存放内存位置
B_bit EQU 7Ah ;数码 管十位数存放内存位置
C_BIT EQU 78H ;数码 管小数存放内存位置
ORG 0000H
AJMP START
ORG 0003H
AJMP PITO
ORG 0030H
START: CLR P1.7
CLR P1.3
CLR P1.5
SETB P1.6
MOV R4, #00H
MOV SP, #60H ;确立堆栈区
MOV PSW, #00H ;
MOV R0, #20H ;RAM 区首地址
MOV R7, #60H ;RAM 区单元个数
ML: MOV @R0, #00H
INC R0
DJNZ R7, ML
CLR IT0
MAIN:LCALL GET_TEMPER ;调用读温度子程序 进行温度显示,这里我们考
;虑用网站提供的两位数码管来显示温度
;显示范围 00 到 99 度,显示精度为 1 度
;因为 12 位转化时每一位的精度为 0.0625 度,
;我们不要求显示小数所以可以抛弃 29H 的低 4
;位将 28H 中的低 4 位移入 29H 中的高 4 位,这
;样获得一个新字节,这个字节就是实际测量获
;得的温度
LCALL DISPLAY ;调用数码管显示 子程序
JNB 00H, MAIN
CLR 00H
15
MOV A, 38H
CJNE A, #00H, SS
AJMP MAIN
SS: LCALL GET_TEMPER
LCALL DISPLAY;调用 数码管显示子程序
LCALL BIJIAO
LCALL XIAOYU
LCALL JIXIAN
JNB DEYU ,LOOP
CLR P1.3 ;关加热器
SETB P1.6 ;关 蓝灯
SETB P0.7 ;关风扇
CLR DEYU
LCALL GET_TEMPER
LCALL DISPLAY
AJMP TT2
LOOP:JNB DAYU ,TT
CLR DAYU
SETB P1.3
SETB P1.6
SETB P0.7
CLR P1.7
LCALL GET_TEMPER
LCALL DISPLAY
AJMP TT2
TT:JNB XIYU, TT2
CLR XIYU
CLR P0.7
CLR P1.6
CLR P1.3
CLR P1.7
LCALL GET_TEMPER
LCALL DISPLAY
TT2:MOV A, 29H
CLR C
CJNE A, 50H, JX
MOV A , 30H
CLR C
CJNE A, 51H, JIA1
AJMP YS2
JIA1:JC JX
MOV A, 51H
MOV 52H, A
ADD A, #2
16
MOV 52H, A
CLR C
MOV A, 30H
CJNE A, 52H, JIA2
JIA2:JNC JX
YS2:SETB P1.7
CLR P1.6
MOV R5, #20H
YS:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS
CLR P1.7
SETB P1.6
MOV R5, #20H
YS1:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS1
YS3:SETB P1.7
CLR P1.6
MOV R5, #20H
YS0:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS0
CLR P1.7
SETB P1.6
MOV R5, #20H
YS01:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS01
YS4:SETB P1.7
CLR P1.6
MOV R5, #20H
YS02:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS02
CLR P1.7
SETB P1.6
MOV R5, #20H
YS03:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS03
JX: MOV A, 29H
CJNE A, 31H, JX00
JX01:SETB P1.7
17
CLR C
AJMP LAST
JX00:JC JX01
CLR P1.7
CJNE A,
JX02:SETB P1.7
CLR C
AJMP LAST
JX03:JNC JX02
32H,
JX03
CLR P1.7
LAST:LCALL GET_TEMPER
LCALL DISPLAY
AJMP SS
;***************************常数表格区**** ******************************************
TAB:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8 H,80H ;0-8
DB 90H,88H,83H,0C6H,0A1H,86H,8EH,0FFH ,0CH ;9,A,B,C,D,E,F,灭,p.
TAB1:DB40H,79H,24H,30H,19H,12H,02H,78H,00H ,10H, ;0.--9.
TAB2:DB 0, 0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 9, ;小数点
;*************************1ms 延时程序*************** *********************
;************************* ****中断服务程序* *********************************
; 完成按键识别,键值求取,按键实时显示 等功能;
;************************* **************** **********************************
PITO: PUSH ACC
PUSH PSW
SETB RS0
CLR RS1
SET B 00H
MAIN1: MOV R7 , #03H ;显示位数为 2 位
MOV R0, #7AH
MOV 78H, #00H
MOV 79H, #00H
MOV 7AH, #00H
KK: LCALL DIR
LCALL KEY1
LOOP1:CJNE A, #11, LOOP2
AJMP LAST0
LOOP2:CJNE A, #12, LOOP3
LJMP LAST3
LOOP3: CJNE A, #10, L4
MOV A, #00H
L4: MOV @R0, A
LCALL DIR
DEC R0
DJNZ R7, KK
18
SETB 01H
LAST0:JNB 01H, KK
LOOP4:LCALL KEY1
CJNE A, #12, LOOP5
AJMP LAST3
LOOP5:CJNE A, #11, LOOP4
LAST1:LCALL DIR
LCALL MUN
LCALL JD
LCALL BIJIAO
LAST3:POP PSW
POP ACC
RETI
;******************精度控制 子程序********** ******
JD: PUSH ACC
PUSH PSW
CLR C
MOV A, 38H
MOV 50H, A
MOV A, 39H
MOV 51H, A
CJNE A, 29H, L001
L001:JC LAST02 ;设温<实温,则跳出
MOV A, 29H
MOV 41H, A
MOV A, 38H
CJNE A, #25, L002
L003:CLR C ;0 <T<25
SUBB A, 41H
CJNE A, #3, L004
L005:MOV A, 30H
ADD A, #5 ;0<T<25, 差值小于 3 度
DA A
JNB ACC.4, L0051
ANL A, #0FH
SETB C
L0051:MOV 39H, A
MOV A, 29H
ADDC A, #1
MOV 38H, A
AJMP LAST2
LAST02: AJMP LAST2
L004:JC L005
MOV A, 39H
19
SUBB A, #0
DA A
MOV 39H, A
JNC L0041
DEC 38H
L0041:MOV A, 38H
SUBB A, #2 ;0<T<25, 差值大 于 3 度
MOV 38H, A
AJMP LAST2
L002:JC L003
CJNE A, #50, L006
L007:CLR C ;25<T<5 0
SUBB A, 41H
CJNE A, #3, L008
L009:MOV A, 30H
ADD A, #1
DA A
JNB ACC.4, L0091
ANL A, #0FH
SETB C
L0091:MOV 39H, A
MOV A, 29H
ADDC A, #1
MOV 38H, A
AJMP LAST2
L008:JC L009
MOV A, 39H
SUBB A, #0
MOV 39H, A
MOV A, 38H
SUBB A, #2
MOV 38H, A
AJMP LAST2
L006:JC L007
CJNE A, #65, L010
L011:CLR C
SUBB A, 41H
CJNE A, #3, L012
L013:MOV A, 30H
ADD A, #2
JNB ACC.4, L00131
ANL A, #0FH
SETB C
L00131:MOV 39H, A
20
MOV A, 29H
ADDC A, #1
MOV 38H, A
AJMP LAST2
L012:JC L013
MOV A, 39H
SUBB A, #0
MOV 39H, A
MOV A, 38H
SUBB A, #2
MOV 38H, A
AJMP LAST2
L010:JC L011
CJNE A, #90, L016
L017:CLR C
SUBB A, 41H
CJNE A, #2, L014
L015:MOV A, 30H
ADD A, #0
JNB ACC.4, L00151
ANL A, #0FH
SETB C
L00151:MOV 39H, A
MOV A, 29H
ADDC A, #1
MOV 38H, A
AJMP LAST2
L014:JC L015
CLR C
MOV A, 38H
SUBB A, #1
MOV 38H, A
AJMP LAST2
L016:JC L017
LAST2:POP PSW
POP ACC
RET
;*******************************键扫描** ************************************
KEY1:LCALL KS1 ;键 扫描
JNZ LK1
LCALL DIR
AJMP KEY1
LK1:LCALL DIR
LCALL DIR
21
LCALL KS1
JNZ LK2
LCALL DIR
AJMP KEY1
LK2:MOV R2, #0FEH ;确定键值
MOV R4, #01H
MOV A, R2
LK4:MOV P0, A
NOP
MOV A, P0
JB ACC.3, LONE
MOV A, #00H
AJMP LKP
LONE:JB ACC.4 , LTWO
MOV A, #03H
AJMP LKP
LTWO:JB ACC.5, LTHR
MOV A, #06H
AJMP LKP
LTHR:JB ACC.6, NEXT5
MOV A, #09H
AJMP LKP
NEXT5:INC R4
MOV A, R2
JNB ACC.2 ,KND
RL A
MOV R2, A
AJMP LK4
KND:AJMP KEY1
LKP: ADD A, R4
PUSH ACC
LK3:LCALL DIR
LCALL KS1
JNZ LK3
POP ACC
RET
KS1: PUSH PSW
MOV P0, #78H
NOP
MOV A, P0 ;判断有无键按下
CPL A
ANL A, #78H
POP PSW
22
RET
;*************求设置温度的二 进制代码,值保存在 38H 单元**************
MUN: PUSH PSW
MOV R0, #7AH ;求键值
MOV A, @R0
SWAP A
DEC R0
ADD A, @R0
MOV R1, A
ANL A, #0F0 H
SWAP A
MOV B, #10
MUL AB
MOV R2, A
MOV A, R1
ANL A, #0FH
ADD A, R2
MOV 38H, A
MOV R0, #78H
MOV 39H, @R0
POP PSW
RET
;*************比较实际温度和设置温度的大小 并设置相应的标志位***********
BIJIAO:MOV A, 29 H ;实际温度
MOV 40H, A
H. 单片机温度控制系统论文 谁告诉我前言和摘要要怎么写,要中英版的.还要总结和感谢,谁发个给偶啊#53
基于51单片机的温度测量系统
摘要: 单片机在检测和控制系统中得到广泛的应用, 温度则是系统常需要测量、控制和保持的一个量。 本文从硬件和软件两方面介绍了AT89C2051单片机温度控制系统的设计,对硬件原理图和程序框图作了简洁的描述。
关键词: 单片机AT89C2051;温度传感器DS18B20;温度;测量
引言
单片机在电子产品中的应用已经越来越广泛,并且在很多电子产品中也将其用到温度检测和温度控制。为此在本文中作者设计了基于atmel公司的AT89C2051的温度测量系统。这是一种低成本的利用单片机多余I/O口实现的温度检测电路, 该电路非常简单, 易于实现, 并且适用于几乎所有类型的单片机。
一.系统硬件设计
系统的硬件结构如图1所示。
1.1数据采集
数据采集电路如图2所示, 由温度传感器DS18B20采集被控对象的实时温度, 提供给AT89C2051的P3.2口作为数据输入。在本次设计中我们所控的对象为所处室温。当然作为改进我们可以把传感器与电路板分离,由数据线相连进行通讯,便于测量多种对象。
DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出,支持3V~5.5V的电压范围,使系统设计更灵活、方便;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20使电压、特性有更多的选择,让我们可以构建适合自己的经济的测温系统。如图2所示DS18B20的2脚DQ为数字信号输入/输出端;1脚GND为电源地;3脚VDD为外接供电电源输入端。
AT89C2051(以下简称2051)是一枚8051兼容的单片机微控器,与Intel的MCS-51完全兼容,内藏2K的可程序化Flash存储体,内部有128B字节的数据存储器空间,可直接推动LED,与8051完全相同,有15个可程序化的I/O点,分别是P1端口与P3端口(少了P3.6)。
1.2接口电路
图2 单片机2051与温度传感器DS18B20的连接图
接口电路由ATMEL公司的2051单片机、ULN2003达林顿芯片、4511BCD译码器、串行EEPROM24C16(保存系统参数)、MAX232、数码管及外围电路构成, 单片机以并行通信方式从P1.0~P1.7口输出控制信号,通过4511BCD译码器译码,用2个共阴极LED静态显示温度的十位、个位。
串行EEPROM24C16是标准I2C规格且只要两根引脚就能读写。由于单片机2051的P1是一个双向的I/O端口,所以在我们在设计中将P1端口当成输出端口用。由图2可知,P1.7作为串性的时钟输出信号与24C16的第6脚相接,P1.6则作为串行数据输出接到24C16的第5脚。P1. 4和P1.5则作为两个数码管的位选信号控制,在P1.4=1时,选中第一个数码管(个位);P1.5=1时,选中第二个数码管(十位)。P1.0~P1.3的输出信号接到译码器4511上作为数码管的显示。此外,由于单片机2051的P3端口有特殊的功能,P3.0(RXD)串行输入端口,P3.1(TXD)串行输出端口,P3.2(INTO)外部中断0,P3.3(INT1)外部中断1P3.4,(T0) 外部定时/计数输入点,P3.5(T1)外部定时/计数输入点。由图2可知,P3.0和P3.1作为与MAX232串行通信的接口;P3.2和P3.3作为中断信号接口;P3.4和P3.5作为外部定时/记数输入点。P3.7作为一个脉冲输出,控制发光二极管的亮灭。
由于在电路中采用的共阴极的LED数码管,所以在设计电路时加了一个达林顿电路ULN2003对信号进行放大,产生足够大的电流驱动数码管显示。由于4511只能进行BCD十进制译码,只能译到0至9,所以在这里我们利用4511译码输出我们所需要的温度。
1.3报警电路简介
图3 温度在七段数码管上显示连接图
本文中所设计的报警电路较为简单,由一个自我震荡型的蜂鸣器(只要在蜂鸣器两端加上超过3V的电压,蜂鸣器就会叫个不停)和一个发光二极管组成(如图3所示)。在这次设计中蜂鸣器是通过ULN2003电流放大IC来控制。在我们所要求的温度达到一定的上界或者下界时(在文中我们设置的上界温度是45℃,下界温度是5℃),报警电路开始工作,主要程序设计如下:
main()//主函数
{unsigned char i=0; <br/>unsigned int m,n; <br/>while(1) <br/>{i=ReadTemperature();//读温度}
if(i>0 && i<=10) //如果温度在0到10度之间直接给七段数码管赋值
{P1=designP1[i];}
else//如果温度大于10度
{m=i%10;//先给第一个七段数码管赋值 <br/>D1=1; <br/>D2=0; <br/>P1=designP1[m]; <br/>n=i/10;//再给第二个七段数码管赋值 <br/>D1=0; <br/>D2=1; <br/>P1=designP1[n]; <br/>if(n>=4&&m>=5)%%(m<=5)//判断温度的取值范围,如果大于45或小于5度,则蜂鸣器叫,发光二极管闪烁 <br/>{ int a,b; <br/>Q1=1;//蜂鸣器叫 <br/>for(a=0;a<1000;a++)//发光二极管闪烁 <br/>for(b=0;b<1000;b++) <br/>Q2=1; <br/>for(a=0;a<1000;a++) <br/>for(b=0;b<1000;b++) <br/>Q2=0;}}}
I. 跪求51单片机温度控制系统开题报告以及论文
摘要
本文主要介绍了基于PID控制理论的单片机温度的控制。控制器件使用单片机,单片机的应用有利于增加控制的灵活性,提高控制精度,减小控制部分的体积,是现代控制的主要硬件部分。
温度是工业控制对象的主要被控参数之一,如冶金,机械,食品,化工各类工业中广泛使用的各种加热炉,热处理炉,反应炉等。在过去多是采用常规的模拟调节器对温度进行控制,本文采用了单片微型机对温度实现自动控制。对不同的升温速率升温,再对某种仪器在不同升温状况下的特性进行检测,达到了较高的精度。
应用继电器自整定方法,可以快速整定PID参数,减少工人的工作量,计算出错的几率降低很多。所使用的时间也减少了很多,工作效率大大提高。并应用经验公式快速计算出相应的数值。
关键词: PID 单片机 继电器整定 温度控制
ABSTRACT
This text mainly introced the controller of PID in instry proce the control of the temperature.The controller piece uses a machine, the application of a machine is advantageous to the vivid of the increment control, exaltation control accuracy, let up the control the physical volume of the part, is main hardware part of the modern control.
The temperature is a mainly instry controled object, such as metallurgy, machine, food, each kind of instry of chemical engineering in various heating stove of the extensive usage, the hot processing stove, reactor etc..At pass by mostly the emulation molator adopt of the normal regulations carries on the control to the temperature, this literary grace uses a miniature machine to carry out the automatic control to the temperature.Carry on the examination towards heating the velocity to heat differently, again to a certain instrument under the condition that dissimilarity heat of characteristic, come to a the higher accuracy.
Using relay setting method, It can settle the parameter of PID quickly and rece the worker's workload, several rates that compute to come amiss lower many. The time also reced a lot of, Work efficiency raises consumedly.Apply the empirical formula also to compute a number for correspond quickly
Keyword: PID Single-chip microcomputer Relay setting temperature control
绪论
温度是生产过程和科学实验中普遍而且重要的物理 参数。在工业生产过程中为了高效地进行生产,必须对生产工艺过程中的主要参数,如温度,压力,流量,速度等进行有效的控制。其中温度的控制在生产过程中占有相当大的比例。准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。本课题是结合生产实际和科研工作,运用PID算法对温度进行控制,以求达到较好的控制效果。
目前先进国家各种炉窑自动化水平较高,装备有完善的检测仪表和计算机控制系统。其计算机控制系统已采用集散系统和分布式系统的形式,大部分配有先进的控制算法,能够获得较好的工艺性能指标。单片微型计算机是随着超大规模集成电路的技术的发展而诞生的。由于它具有体积小,功能强,性价比高等优点,所以广泛应用于电子仪表,家用电器,节能装置,军事装置,机器人,工业控制等诸多领域,使产品小型化,智能化,既提高了产品的功能和质量又降低了成本,简化了设计。本文主要涉及MCS-51单片机在温度控制中的应用。应用单片机实现PID控制算法和PID参数的整定。
PID 控制是最早发展起来的控制策略之一, 由于其算法简单、鲁棒性好、可靠性高等优点, 被广泛应用于工业过程控制。当用计算机实现后, 数字 PID 控制器更显示出参数调整灵活、算法变化多样、简单方便的优点。随着生产的发展, 对控制的要求也越来越高, 随之发展出许多以计算机为基础的新型控制算法, 如自适应 PID 控制、模糊 PID 控制、智能 PID 控制等等。
1.PID 控制原理
模拟 PID 控制系统原理框图如图 1- 1所示, 系统由模拟 PID 控制器和受控对象组成。
PID 控制器根据给定值 r(t) 与实际输出值c(t) 构成的控制偏差:
(1-1 )
将偏差的比例(P)、积分( I) 和微分 (D ) 通过线性组合构成控制量, 对受控对象进行控制。其控制规律为:
(1- 2)
或写成传递函数形式:
(1- 3)
式中, 为比例系数, 为积分时间常数, 为微分时间常数。
简单说来, PID 控制器各校正环节的作用是这样的:
●比例环节: 即时成比例地反应控制系统的偏差信号 , 偏差一旦产生, 控制器立即产生控制作用以减小误差。
●积分环节: 主要用于消除静差, 提高系统的无差度, 积分作用的强弱取决于积分时间常
数 , 越大积分作用越弱, 反之则越强。
● 微分环节: 能反应偏差信号的变化趋势(变化速率) , 并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号, 从而加快系统的动作速度, 减小调节时间。
2. PID控制规律及对系统稳定性的影响
控制器输出与偏差信号之间的函数关系称为控制规律。控制规律决定了控制器的特性。在控制器输出稳定之前,偏差 与输出之间的相互关系,称为控制器的动态特性。在控制器上施加恒定的偏差,经过一段时间,控制器的输出达到稳定,偏差 与输出 的相互关系称为控制器的静特性。控制器的输入与输出信号的相互关系如图所示。图中 为偏差信号,通常用测量值与给定值只差在全量程范围中所占的百分数来表示: