❶ MCS-51单片机什么是全双工,半双工,单工串行通信
单工只有一根数据线,信息只闹枯纯能单向传送。半双工也只有一根数据线,但信息可以分时双向传送。全双工有两根数据线,可以同时双向传送。
半双工可以在一个信号载体的两个方向上传输,但是不能同时传输。例如,在一个局域网上使用具有半液咐双工传输的技术,一个工作站可以在线上发送数据,然后立即在线上接收数据,这些数据来自数据刚刚传输的方向。
(1)51单片机4g通信扩展阅读:
全双工方式在发送设备的发送方和接收设备的接收方之间采取点到点的连接,这意味着在全双工的传送方式下,可以得到更高的数据传输速度。
全双工方式无需进行方向的切换,因此,没有切换操作所产生的时间延迟,这对那些不能有时间延误的交互式应用(例如远程监测和控制系统)十分有利。这种方式要求通讯双方均有发送器和接收器,同时败基,需要2根数据线传送数据信号。
❷ 试述MCS—51单片机的多机通讯原理
用串口连接,其中一个为主机,其余为从机,所有从机的RXD都接到主机的TXD端,TXD接到主机的RXD端,所有通信都有主机来发起,从机不能主动发起通信操作,只能等待,而且从机之间通信要通过主机中转。串行端口控制寄存器SCON要做相应的配置。
❸ 51单片机如何通过GPRS模块与手机通信
你好,GPRS模块通常是用AT命令控制的,可以用单片机的串口(USART)向GPRS模块发送相应的命令,实现与手机的通信。比如说向GPRS模块发送拨打电话的AT命令,即可实现电话预警,类似的还有短信控制,蓝牙通信,这些都可以实现模块与手机通信。
我现在也在做GPRS模块通信,使用的是飞思创电子的SIM800C评估板,实现与服务器的TCP通信,已经调通了。有兴趣的话,欢迎一起学习交流
❹ 用51单片机怎么控制4G模块发短信
一般来说4g模块都有一个串口,51单片机就通过这个串口来发送at命令控制4g模块。收发短信有相应的at命令,你在4g模块的手册里面可以找到。
❺ 4G通信模块可以连接STC89C52单片机吗具体怎么连接急求
你这有点像上身穿西服,脚上却穿草鞋,4G通信模块要的就是速度,相当于西服。而STC89C52的速度根本不适应4G通信模块,就相当于那草鞋。
STC89C52 是STC单片机中速度最慢的,最新型的 是STC8系列,再就是STC15系列的,其速度,相当于运动鞋配西服,也还免强。
如果能用STM32单片机才是理想的配置,可能在开发上有点难度,如果不熟悉,要现学是有困难。那至少也要用STC15或STC8。还是51的内核,写程序比较容易,开发上更容易。如果对速度要求不是太高,也还可以。
❻ 为什么电脑给4G通讯模块发送AT指令可以得到回复,51单片机给通讯模块发送AT指令却失败了
注意AT命令后加的回车换行符!!!
电脑发送一般是自动加回车换行符的,单片机需要手动加上去
❼ 51单片机串口通讯
51单片机串口通信
来源:维库 作者:
关键字:51单片机 串口通信
这节我们主要讲单片机上串口的工作原理和如何通过程序来对串口进行设置,以及根据所给出的实例实现与PC 机通信。
一、原理简介
51 单片机内部有一个全双工串行接口。什么叫全双工串口呢?一般来说,只能接受或只能发送的称为单工串行;既可接收又可发送,但不能同时进行的称为半双工;能同时接收和发送的串行口称为全双工串行口。串行通信是指数据一位一位地按顺序传送的通信方式,其突出优点是只需一根传输线,可大大降低硬件成本,适合远距离通信。其缺点是传输速度较低。
与之前一样,首先我们来了解单片机串口相关的寄存器。
SBUF 寄存器:它是两个在物理上独立的接收、发送缓冲器,可同时发送、接收数据,可通过指令对SBUF 的读写来区别是对接收缓冲器的操作还是对发送缓冲器的操作。从而控制外部两条独立的收发信号线RXD(P3.0)、TXD(P3.1),同时发送、接收数据,实现全双工。
串行口控制寄存器SCON(见表1) 。
表1 SCON寄存器
表中各位(从左至右为从高位到低位)含义如下。
SM0 和SM1 :串行口工作方式控制位,其定义如表2 所示。
表2 串行口工作方式控制位
其中,fOSC 为单片机的时钟频率;波特率指串行口每秒钟发送(或接收)的位数。
SM2 :多机通信控制位。 该仅用于方式2 和方式3 的多机通信。其中发送机SM2 = 1(需要程序控制设置)。接收机的串行口工作于方式2 或3,SM2=1 时,只有当接收到第9 位数据(RB8)为1 时,才把接收到的前8 位数据送入SBUF,且置位RI 发出中断申请引发串行接收中断,否则会将接受到的数据放弃。当SM2=0 时,就不管第位数据是0 还是1,都将数据送入SBUF,并置位RI 发出中断申请。工作于方式0 时,SM2 必须为0。
REN :串行接收允许位:REN =0 时,禁止接收;REN =1 时,允许接收。
TB8 :在方式2、3 中,TB8 是发送机要发送的第9 位数据。在多机通信中它代表传输的地址或数据,TB8=0 为数据,TB8=1 时为地址。
RB8 :在方式2、3 中,RB8 是接收机接收到的第9 位数据,该数据正好来自发送机的TB8,从而识别接收到的数据特征。
TI :串行口发送中断请求标志。当CPU 发送完一串行数据后,此时SBUF 寄存器为空,硬件使TI 置1,请求中断。CPU 响应中断后,由软件对TI 清零。
RI :串行口接收中断请求标志。当串行口接收完一帧串行数据时,此时SBUF 寄存器为满,硬件使RI 置1,请求中断。CPU 响应中断后,用软件对RI 清零。
电源控制寄存器PCON(见表3) 。
表3 PCON寄存器
表中各位(从左至右为从高位到低位)含义如下。
SMOD :波特率加倍位。SMOD=1,当串行口工作于方式1、2、3 时,波特率加倍。SMOD=0,波特率不变。
GF1、GF0 :通用标志位。
PD(PCON.1) :掉电方式位。当PD=1 时,进入掉电方式。
IDL(PCON.0) :待机方式位。当IDL=1 时,进入待机方式。
另外与串行口相关的寄存器有前面文章叙述的定时器相关寄存器和中断寄存器。定时器寄存器用来设定波特率。中断允许寄存器IE 中的ES 位也用来作为串行I/O 中断允许位。当ES = 1,允许 串行I/O 中断;当ES = 0,禁止串行I/O 中断。中断优先级寄存器IP的PS 位则用作串行I/O 中断优先级控制位。当PS=1,设定为高优先级;当PS =0,设定为低优先级。
波特率计算:在了解了串行口相关的寄存器之后,我们可得出其通信波特率的一些结论:
① 方式0 和方式2 的波特率是固定的。
在方式0 中, 波特率为时钟频率的1/12, 即fOSC/12,固定不变。
在方式2 中,波特率取决于PCON 中的SMOD 值,即波特率为:
当SMOD=0 时,波特率为fosc/64 ;当SMOD=1 时,波特率为fosc/32。
② 方式1 和方式3 的波特率可变,由定时器1 的溢出率决定。
当定时器T1 用作波特率发生器时,通常选用定时初值自动重装的工作方式2( 注意:不要把定时器的工作方式与串行口的工作方式搞混淆了)。其计数结构为8 位,假定计数初值为Count,单片机的机器周期为T,则定时时间为(256 ?Count)×T 。从而在1s内发生溢出的次数(即溢出率)可由公式(1)所示:
从而波特率的计算公式由公式(2)所示:
在实际应用时,通常是先确定波特率,后根据波特率求T1 定时初值,因此式(2)又可写为:
51单片机串口通讯
二、电路详解
下面就对图1 所示电路进行详细说明。
图1 串行通信实验电路图
最小系统部分(时钟电路、复位电路等)第一讲已经讲过,在此不再叙述。我们重点来了解下与计算机通信的RS-232 接口电路。可以看到,在电路图中,有TXD 和RXD 两个接收和发送指示状态灯,此外用了一个叫MAX3232 的芯片,那它是用来实现什么的呢?首先我们要知道计算机上的串口是具有RS-232 标准的串行接口,而RS-232 的标准中定义了其电气特性:高电平“1”信号电压的范围为-15V~-3V,低电平“0”
信号电压的范围为+3V~+15V。可能有些读者会问,它为什么要以这样的电气特性呢?这是因为高低电平用相反的电压表示,至少有6V 的压差,非常好的提高了数据传输的可靠性。由于单片机的管脚电平为TTL,单片机与RS-232 标准的串行口进行通信时,首先要解决的便是电平转换的问题。一般来说,可以选择一些专业的集成电路芯片,如图中的MAX3232。MAX3232 芯片内部集成了电压倍增电路,单电源供电即可完成电平转换,而且工作电压宽,3V~5.5V 间均能正常工作。其典型应用如图中所示,其外围所接的电容对传输速率有影响,在试验套件中采用的是0.1μF。
值得一提的是MAX3232 芯片拥有两对电平转换线路,图中只用了一路,因此浪费了另一路,在一些场合可以将两路并联以获得较强的驱动抗干扰能力。此外,我们有必要了解图中与计算机相连的DB-9 型RS-232的引脚结构(见图2)。
图2 DB-9连接器接口图
其各管脚定义如下(见表4)。
表4 DB-9型接口管脚定义
三、程序设计
本讲设计实例程序如下:
#include "AT89X52.h" (1)
void Init_Com(void) ( 2)
{
TMOD = 0x20; ( 3)
PCON = 0x00; ( 4)
SCON = 0x50; ( 5)
TH1 = 0xE8; ( 6)
TL1 = 0xE8; ( 7)
TR1 = 1; ( 8)
}
void main(void) ( 9)
{
unsigned char dat; ( 10)
Init_Com(); ( 11)
while(1) ( 12)
程序详细说明:
(1)头文件包含。
(2)声明串口初始化程序。
(3)设置定时器1 工作在模式2,自动装载初值(详见第二讲)。
(4)SMOD 位清0,波特率不加倍。
(5)串行口工作在方式1,并允许接收。
(6)定时器1 高8 位赋初值。波特率为1200b/s(7)定时器1 低8 位赋初值。
(8)启动定时器。
(9)主函数。
(10)定义一个字符型变量。
(11)初始化串口。
(12)死循环。
(13)如果接收到数据。
(14)将接收到的数据赋给之前定义的变量。
(15)将接收到的值输出到P0 口。
(16)对接收标志位清0,准备再次接收。
(17)将接收到的数据又发送出去。
(18)查询是否发送完毕。
(19)对发送标志位清0。
四、调试要点与实验现象
接好硬件,通过冷启动方式将程序所生成的。hex文件下载到单片机运行后,打开串口调试助手软件,设置好波特率1200,复位单片机,然后在通过串口调试助手往单片机发送数据(见图3),可以观察到在接收窗口有发送的数据显示,此外电路板上的串行通信指示灯也会闪烁,P0 口所接到LED 灯会闪烁所接收到的数据。
图3 串口软件调试界面
另外串口调试助手软件使用时应注意的是,如果单片机开发板采用串口下载而且和串口调试助手是使用同一串口,则在打开串口软件的同时不能给单片机下载程序,如需要下载,请首先点击“关闭串口”,做发送实验的时候,注意如果选中16 进制发送的就是数字或者字母的16 进制数值,比如发送“0”,实际接收的就应该是0x00,如果不选中,默认发送的是ASCII 码值,此时发送“0”,实际接收的就应该是0x30,这点可以通过观察板子P0 口上的对应的LED 指示出来。
五、总结
本讲介绍了单片机串口通信的原理并给出了实例,通过该讲,读者可以了解和掌握51 单片机串口通信的原理与应用流程,利用串口通信,单片机可以与计算机相连,也可以单片机互联或者多个单片机相互通信组网等,在实际的工程应用中非常广泛。从学习的角度来说,熟练的利用串口将单片机系统中的相关信息显示在计算机上可以很直观方便的进行调试和开发。
❽ 51单片机实战:与计算机异步串行通信
猴!今儿扯串口,相对于并行——一口气全把数据扔过去,串行显得更加稳重——一位一位来。
串行就是这样,只需要一条数据线(全双工和同步串行时两条),一位一位的传过去。为了让大家在直到你是在给我传数据而不是外面的噪音或者是胡说八道,所以串行数据的各位要组装帧(看正文中的 帧格式 )。乍一看,这种方式跟并行比肯定慢的一腿。但实际上,多亏了它的稳定性,可以在波特率极高的情况下依然保持稳定,这是并行所办不到的(传的快了或距离远了就张牙舞爪了),所以发展到现在,串口已经把并口甩走几条街啦。
并口传输的例子: 《51单片机实战:液晶显示器のLCD1602》
除此之外,串行传输分同步和异步。同步除了传输数据外,还要传输时钟信号,以保持双方同步。另一种,异步,就没这么麻烦了,也是本例中要讲到的,各自走各自的时钟就好,只要帧格式和波特率都商量好是一样的就好。
电平之前在文章 《51单片机实战:液晶显示器のLCD1602》 中介绍过,那里只说了TTL,本例中由于要和计算机打交道,所以多了一种电平:RS-232C
在单片机中是TTL,电脑那边传出和接收都是RS232,所以两种电平需要作转换。
当当当!它就是干这活的。
举个栗子,比如单片机从T1IN输入TTL电平,转换好的RS232电平就从R1OUT输出。其他的照猫画虎,这里不详细说这个东西,因为咱们在Proteus里干活,用不着转换(Proteus光环)。
在此描述串行传输数据速率。
正儿八经的说,波特率乃 码元 的传输速率,即每秒传输的码元个数(码元可以是任意进制的),并不是什么每秒传输的比特数,大家注意。
波特来源于一个人的名字: Jean-Maurice-Émile Baud ot ,因此简写为Baud,单位符号:Bd。波特率可简写成Bd/s。
在串口通信中,其码元就是二进制信号,所以波特率的数值等于比特率数值,但你不能说波特率就是比特率啊!
单片机的串口通信有四种方式(各方式具体是干什么的,别着急,在后面),其中方式0和方式2的波特率是固定的。方式1和方式3的波特率是可变的,其脉冲周期由定时器1溢出产生。
其中 f 是系统晶振频率,T1是计时器1, SMOD 是PCON中的最高位(PCON见相关寄存器的第一个)。
可以从上述公式看出,波特率不可变是因为直接与系统晶振频率相关(晶振频率不可变,除非换晶振),而可变是因为直接与T1的溢出率相关(溢出率可以改变)。
溢出率
在之前定时器应用的例子( 《51单片机实战:定时器与数码管的应用》 )中,我们计算的是溢出周期,也就是多长时间会溢出一次。这次我们用到的溢出率其实是同一个东西,取倒数就可以了。
详见: 《51单片机实战:定时器与数码管的应用》 - 知识点 - 定时器/计数器 - 初值
11.0592MHz
为什么要用这么蹩脚的数字作晶振频率哈,就是跟这里有关。如果你已经用上述公式计算过串口方式1下的12MHz和11.0592MHz在9600波特率下的定时器初值,你就会发现,前者得出一个小数,而后者是个整数。
我们可没办法用小数赋初值,所以你若用近似的整数作初值,就意味着会产生误差。
若用其他的晶振和波特率的话,请自行按前面的公式计算。
串行传输按比特来,一个个比特组成一个帧,帧需要一定的格式才能被双方识别这是一个帧信息。
电源管理 寄存器,用于管理单片机的电源部分。
字节地址: 87H ,不能位寻址, reg52.h 中已定义,单片机复位时全部清零。
上表中出现的“串口方式”见下表的SM0和SM1。
串口控制 寄存器,用于设定串口工作方式。
字节地址: 98H ,可位寻址, reg52.h 中已定义,单片机复位时全部清零。
上表中波特率可变的方式,都由定时器1的溢出率控制。
当单片机接收到字符 a 时,点亮一个LED灯。传送方式:9600波特率,8数据位,无校验位,1停止位。
本例中我就不写电脑端程序了,直接用现成的。
注意,这里面我没有放转换电平转换芯片(MAX232),只有在Proteus里可以这么干,现实中焊板子还是要做电平转换的,这里这个软件给简化了。
COMPIM
虚拟终端
右下角那个东西是虚拟终端(Virtual Terminal),他可以直接截获串口传来的消息然后显示出来。很方便做这方面调试时使用。
路径: 边栏 → instruments → virtual terminal
如果在调试的时候不小心把它的终端窗口关了,再次打开路径: 菜单 → debug - virtual terminal ,注意是在启动调试的情况下。
大年初二,拜访完姥姥家就该看看单片机怎么玩,你说是吧!这两天快马加鞭了,下一站:一周目大BOSS。各位加油。
❾ 51单片机中串口通信在哪个端口,有没有固定的。。
51单片机中的串口通信是通过P3口的两个引脚(即P3.0和P3.1)实现的,其中P3.0口为串口接收引脚(RXD),P3.1口为串口发送引脚(TXD)。在51单片机中,串口通信的端口是固定的,即P3.0口和P3.1口。这两个引派差脚通过串口通信电路与串口通信芯片相连,实现串口通信功能。需要注意的是,在使用51单片机进行串口通信时,需要根据迟羡隐具体的通信协议和波特率等参数进行相关的配置,并在程码厅序中编写相应的串口通信代码,才能实现数据的发送和接收。