导航:首页 > 操作系统 > c定时器linux

c定时器linux

发布时间:2023-08-15 13:34:37

linux内核设计与实现的目录

译者序
序言
前言
作者简介
第1章Linux内核简介1
1.1Unix的历史1
1.2追寻Linus足迹:Linux简介2
1.3操作系统和内核简介3
1.4Linux内核和传统Unix内核的比较5
1.5Linux内核版本7
1.6Linux内核开发者社区8
1.7小结8
第2章从内核出发10
2.1获取内核源码10
2.1.1使用Git10
2.1.1安装内核源代码10
2.1.3使用补丁11
2.2内核源码树11
2.3编译内核12
2.3.1配置内核12
2.3.2减少编译的垃圾信息14
2.3.3衍生多个编译作业 14
2.3.4安装新内核14
2.4内核开发的特点15
2.4.1无libc库抑或无标准头文件15
2.4.2GNU C16
2.4.3没有内存保护机制18
2.4.4不要轻易在内核中使用浮点数18
2.4.5容积小而固定的栈18
2.4.6同步和并发18
2.4.7可移植性的重要性19
2.5小结19
第3章进程管理20
3.1进程20
3.2进程描述符及任务结构 21
3.2.1分配进程描述符22
3.2.2进程描述符的存放23
3.2.3进程状态23
3.2.4设置当前进程状态25
3.2.5进程上下文25
3.2.6进程家族树25
3.3进程创建26
3.3.1写时拷贝27
3.3.2fork()27
3.3.3vfork()28
3.4线程在Linux中的实现28
3.4.1创建线程29
3.4.2内核线程30
3.5进程终结31
3.5.1删除进程描述符32
3.5.2孤儿进程造成的进退维谷32
3.6小结34
第4章进程调度35
4.1多任务35
4.2Linux 的进程调度36
4.3策略36
4.3.1I/O消耗型和处理器消耗型的进程36
4.3.2进程优先级37
4.3.3时间片38
4.3.4调度策略的活动38
4.4Linux调度算法39
4.4.1调度器类39
4.4.2Unix 系统中的进程调度40
4.4.3公平调度41
4.5Linux调度的实现42
4.5.1时间记账42
4.5.2进程选择44
4.5.3调度器入口48
4.5.4睡眠和唤醒49
4.6抢占和上下文切换51
4.6.1用户抢占53
4.6.2内核抢占53
4.7实时调度策略54
4.8与调度相关的系统调用54
4.8.1与调度策略和优先级相关的系统调用55
4.8.2与处理器绑定有关的系统调用55
4.8.3放弃处理器时间56
4.9小结56
第5章系统调用57
5.1与内核通信57
5.2API、POSIX和C库57
5.3系统调用58
5.3.1系统调用号59
5.3.2系统调用的性能59
5.4系统调用处理程序60
5.4.1指定恰当的系统调用60
5.4.2参数传递60
5.5系统调用的实现61
5.5.1实现系统调用61
5.5.2参数验证62
5.6系统调用上下文64
5.6.1绑定一个系统调用的最后步骤65
5.6.2从用户空间访问系统调用67
5.6.3为什么不通过系统调用的方式实现68
5.7小结68
第6章内核数据结构69
6.1链表69
6.1.1单向链表和双向链表69
6.1.2环形链表70
6.1.3沿链表移动71
6.1.4Linux 内核中的实现71
6.1.5操作链表73
6.1.6遍历链表75
6.2队列78
6.2.1kfifo79
6.2.2创建队列79
6.2.3推入队列数据79
6.2.4摘取队列数据80
6.2.5获取队列长度80
6.2.6重置和撤销队列80
6.2.7队列使用举例 81
6.3映射 81
6.3.1初始化一个idr82
6.3.2分配一个新的UID82
6.3.3查找UID83
6.3.4删除UID84
6.3.5撤销idr84
6.4二叉树84
6.4.1二叉搜索树84
6.4.2自平衡二叉搜索树 85
6.5数据结构以及选择 87
6.6算法复杂度88
6.6.1算法88
6.6.2大o 符号88
6.6.3大θ符号89
6.6.4时间复杂度89
6.7小结 90
第7章中断和中断处理91
7.1中断91
7.2中断处理程序92
7.3上半部与下半部的对比93
7.4注册中断处理程序93
7.4.1中断处理程序标志94
7.4.2一个中断例子95
7.4.3释放中断处理程序95
7.5编写中断处理程序96
7.5.1共享的中断处理程序97
7.5.2中断处理程序实例97
7.6中断上下文99
7.7中断处理机制的实现100
7.8/proc/interrupts102
7.9中断控制103
7.9.1禁止和激活中断103
7.9.2禁止指定中断线105
7.9.3中断系统的状态105
7.10小结106
第8章下半部和推后执行的工作107
8.1下半部107
8.1.1为什么要用下半部108
8.1.2下半部的环境108
8.2软中断110
8.2.1软中断的实现111
8.2.2使用软中断113
8.3tasklet114
8.3.1tasklet的实现114
8.3.2使用tasklet116
8.3.3老的BH机制119
8.4工作队列120
8.4.1工作队列的实现121
8.4.2使用工作队列124
8.4.3老的任务队列机制126
8.5下半部机制的选择127
8.6在下半部之间加锁128
8.7禁止下半部128
8.8小结129
第9章内核同步介绍131
9.1临界区和竞争条件131
9.1.1为什么我们需要保护132
9.1.2单个变量133
9.2加锁134
9.2.1造成并发执行的原因135
9.2.2了解要保护些什么136
9.3死锁137
9.4争用和扩展性138
9.5小结140
第10章内核同步方法141
10.1原子操作141
10.1.1原子整数操作142
10.1.264位原子操作144
10.1.3原子位操作145
10.2自旋锁147
10.2.1自旋锁方法148
10.2.2其他针对自旋锁的操作149
10.2.3自旋锁和下半部150
10.3读-写自旋锁150
10.4信号量152
10.4.1计数信号量和二值信号量153
10.4.2创建和初始化信号量154
10.4.3使用信号量154
10.5读-写信号量155
10.6互斥体156
10.6.1信号量和互斥体158
10.6.2自旋锁和互斥体158
10.7完成变量158
10.8BLK:大内核锁159
10.9顺序锁160
10.10禁止抢占161
10.11顺序和屏障162
10.12小结165
第11章定时器和时间管理166
11.1内核中的时间概念166
11.2节拍率:HZ167
11.2.1理想的HZ值168
11.2.2高HZ的优势169
11.2.3高HZ的劣势169
11.3jiffies170
11.3.1jiffies的内部表示171
11.3.2jiffies 的回绕172
11.3.3用户空间和HZ173
11.4硬时钟和定时器174
11.4.1实时时钟174
11.4.2系统定时器174
11.5时钟中断处理程序174
11.6实际时间176
11.7定时器178
11.7.1使用定时器178
11.7.2定时器竞争条件180
11.7.3实现定时器180
11.8延迟执行181
11.8.1忙等待181
11.8.2短延迟182
11.8.3schele_timeout()183
11.9小结185
第12章内存管理186
12.1页186
12.2区187
12.3获得页189
12.3.1获得填充为0的页190
12.3.2释放页191
12.4kmalloc()191
12.4.1gfp_mask标志192
12.4.2kfree()195
12.5vmalloc()196
12.6slab层197
12.6.1slab层的设计198
12.6.2slab分配器的接口200
12.7在栈上的静态分配203
12.7.1单页内核栈203
12.7.2在栈上光明正大地工作203
12.8高端内存的映射204
12.8.1永久映射204
12.8.2临时映射204
12.9每个CPU的分配20512.10新的每个CPU接口206
12.10.1编译时的每个CPU数据206
12.10.2运行时的每个CPU数据207
12.11使用每个CPU数据的原因208
12.12分配函数的选择209
12.13小结209
第13章虚拟文件系统210
13.1通用文件系统接口210
13.2文件系统抽象层211
13.3Unix文件系统212
13.4VFS 对象及其数据结构213
13.5超级块对象214
13.6超级块操作215
13.7索引节点对象217
13.8索引节点操作219
13.9目录项对象222
13.9.1目录项状态222
13.9.2目录项缓存223
13.10目录项操作224
13.11文件对象225
13.12文件操作226
13.13和文件系统相关的数据结构230
13.14和进程相关的数据结构232
13.15小结233
第14章块I/O层234
14.1剖析一个块设备234
14.2缓冲区和缓冲区头235
14.3bio结构体237
14.3.1I/O向量238
14.3.2新老方法对比239
14.4请求队列240
14.5I/O调度程序240
14.5.1I/O调度程序的工作241
14.5.2Linus 电梯241
14.5.3最终期限I/O调度程序242
14.5.4预测I/O调度程序244
14.5.5完全公正的排队I/O调度程序244
14.5.6空操作的I/O调度程序245
14.5.7I/O调度程序的选择245
14.6小结246
第15章进程地址空间247
15.1地址空间247
15.2内存描述符248
15.2.1分配内存描述符249
15.2.2撤销内存描述符250
15.2.3mm_struct 与内核线程250
15.3虚拟内存区域251
15.3.1VMA标志251
15.3.2VMA 操作253
15.3.3内存区域的树型结构和内存区域的链表结构254
15.3.4实际使用中的内存区域254
15.4操作内存区域255
15.4.1find_vma()256
15.4.2find_vma_prev()257
15.4.3find_vma_intersection()257
15.5mmap()和do_mmap():创建地址区间258
15.6mummap()和do_mummap():删除地址区间259
15.7页表260
15.8小结261
第16章页高速缓存和页回写262
16.1缓存手段262
16.1.1写缓存262
16.1.2缓存回收263
16.2Linux 页高速缓存264
16.2.1address_space对象264
16.2.2address_space 操作266
16.2.3基树267
16.2.4以前的页散列表268
16.3缓冲区高速缓存268
16.4flusher线程268
16.4.1膝上型计算机模式270
16.4.2历史上的bdflush、kupdated 和pdflush270
16.4.3避免拥塞的方法:使用多线程271
16.5小结271
第17章设备与模块273
17.1设备类型273
17.2模块274
17.2.1Hello,World274
17.2.2构建模块275
17.2.3安装模块277
17.2.4产生模块依赖性277
17.2.5载入模块278
17.2.6管理配置选项279
17.2.7模块参数280
17.2.8导出符号表282
17.3设备模型283
17.3.1kobject283
17.3.2ktype284
17.3.3kset285
17.3.4kobject、ktype和kset的相互关系285
17.3.5管理和操作kobject286
17.3.6引用计数287
17.4sysfs288
17.4.1sysfs中添加和删除kobject 290
17.4.2向sysfs中添加文件291
17.4.3内核事件层293
17.5小结294
第18章调试295
18.1准备开始295
18.2内核中的bug296
18.3通过打印来调试296
18.3.1健壮性296
18.3.2日志等级297
18.3.3记录缓冲区298
18.3.4syslogd和klogd298
18.3.5从printf()到printk()的转换298
18.4oops298
18.4.1ksymoops300
18.4.2kallsyms300
18.5内核调试配置选项301
18.6引发bug并打印信息301
18.7神奇的系统请求键302
18.8内核调试器的传奇303
18.8.1gdb303
18.8.2kgdb304
18.9探测系统304
18.9.1用UID作为选择条件304
18.9.2使用条件变量305
18.9.3使用统计量305
18.9.4重复频率限制305
18.10用二分查找法找出引发罪恶的变更306
18.11使用Git进行二分搜索307
18.12当所有的努力都失败时:社区308
18.13小结308
第19章可移植性309
19.1可移植操作系统309
19.2Linux移植史310
19.3字长和数据类型311
19.3.1不透明类型313
19.3.2指定数据类型314
19.3.3长度明确的类型314
19.3.4char型的符号问题315
19.4数据对齐315
19.4.1避免对齐引发的问题316
19.4.2非标准类型的对齐316
19.4.3结构体填补316
19.5字节顺序318
19.6时间319
19.7页长度320
19.8处理器排序320
19.9SMP、内核抢占、高端内存321
19.10小结321
第20章补丁、开发和社区322
20.1社区322
20.2Linux编码风格322
20.2.1缩进323
20.2.2switch 语句323
20.2.3空格324
20.2.4花括号325
20.2.5每行代码的长度326
20.2.6命名规范326
20.2.7函数326
20.2.8注释326
20.2.9typedef327
20.2.10多用现成的东西328
20.2.11在源码中减少使用ifdef328
20.2.12结构初始化328
20.2.13代码的事后修正329
20.3管理系统329
20.4提交错误报告329
20.5补丁330
20.5.1创建补丁330
20.5.2用Git创建补丁331
20.5.3提交补丁331
20.6小结332
参考资料333

② linux下的定时器函数:error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘.’

expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘*’ toke
我遇到的是这样的问题,然后在自定义的头文件xxx.h中加了一个相应的系统头文件就ok了!
你也试试……

③ linux 时钟中断 哪个定时器

一. Linux的硬件时间
PC机中的时间有三种硬件时钟实现,这三种都是基于晶振产生的方波信号输入。这三种时钟为:(1)实时时钟RTC ( Real Time Clock) (2)可编程间隔器PIT(Programmable Interval Timer )(3)时间戳计数器TSC(Time Stamp Clock)
1. 实时时钟 RTC
用于长时间存放系统时间的设备,即时关机后也可依靠主板CMOS电池继续保持系统的计时,原理图如下:

Note: Linux与RTC的关系是,当Linux启动时从RTC读取时间和日期的基准值,然后在Kernel运行期间便抛开RTC,以软件的形式维护系统的时间日期,并在适当时机由Kernel将时间写回RTC Register.
1.1 RTC Register
(1). 时钟与日历Register
共10个,地址:0x00-0x09,分别用于保存时间日历的具体信息,详情如下:
00 Current Second for RTC
01 Alarm Second
02 Current Minute
03 Alarm Minute
04 Current Hour
05 Alarm Hour
06 Current Day of Week(1=Sunday)
07 Current Date of Month
08 Current Month
09 Current Year
(2).状态和控制Register
共四个,地址:0x0a-0x0d,控制RTC芯片的工作方式,并表示当前状态。
l 状态RegisterA , 0x0A 格式如下:
bit[7]——UIP标志(Update in Progress),为1表示RTC正在更新日历寄存器组中的值,此时日历寄存器组是不可访问的(此时访问它们将得到一个无意义的渐变值)。
bit[6:4]——这三位是用来定义RTC的操作频率。各种可能的值如下:

DV2 DV1 DV0
0 0 0 4.194304 MHZ
0 0 1 1.048576 MHZ
0 1 0 32.769 KHZ
1 1 0/1 任何
PC机通常设置成“010”。
bit[3:0]——速率选择位(Rate Selection bits),用于周期性或方波信号输出。
RS3 RS2 RS1 RS0 周期性中断 方波 周期性中断 方波
0 0 0 0 None None None None
0 0 0 1 30.517μs 32.768 KHZ 3.90625ms 256 HZ
0 0 1 0 61.035μs 16.384 KHZ
0 0 1 1 122.070μs 8.192KHZ
0 1 0 0 244.141μs 4.096KHZ
0 1 0 1 488.281μs 2.048KHZ
0 1 1 0 976.562μs 1.024KHZ
0 1 1 1 1.953125ms 512HZ
1 0 0 0 3.90625ms 256HZ
1 0 0 1 7.8125ms 128HZ
1 0 1 0 15.625ms 64HZ
1 0 1 1 31.25ms 32HZ
1 1 0 0 62.5ms 16HZ
1 1 0 1 125ms 8HZ
1 1 1 0 250ms 4HZ
1 1 1 1 500ms 2HZ
PC机BIOS对其默认的设置值是“0110”
l 状态Register B , 0x0B 格式如下:
bit[7]——SET标志。为1表示RTC的所有更新过程都将终止,用户程序随后马上对日历寄存器组中的值进行初始化设置。为0表示将允许更新过程继续。
bit[6]——PIE标志,周期性中断enable标志。
bit[5]——AIE标志,告警中断enable标志。
bit[4]——UIE标志,更新结束中断enable标志。
bit[3]——SQWE标志,方波信号enable标志。
bit[2]——DM标志,用来控制日历寄存器组的数据模式,0=BCD,1=BINARY。BIOS总是将它设置为0。
bit[1]——24/12标志,用来控制hour寄存器,0表示12小时制,1表示24小时制。PC机BIOS总是将它设置为1。
bit[0]——DSE标志。BIOS总是将它设置为0。
l 状态Register C,0x0C 格式如下:
bit[7]——IRQF标志,中断请求标志,当该位为1时,说明寄存器B中断请求 发生。
bit[6]——PF标志,周期性中断标志,为1表示发生周期性中断请求。
bit[5]——AF标志,告警中断标志,为1表示发生告警中断请求。
bit[4]——UF标志,更新结束中断标志,为1表示发生更新结束中断请求。
l 状态Register D,0x0D 格式如下:
bit[7]——VRT标志(Valid RAM and Time),为1表示OK,为0表示RTC 已经掉电。
bit[6:0]——总是为0,未定义。
2.可编程间隔定时器 PIT
每个PC机中都有一个PIT,以通过IRQ0产生周期性的时钟中断信号,作为系统定时器 system timer。当前使用最普遍的是Intel 8254 PIT芯片,它的I/O端口地址是0x40~0x43。
Intel 8254 PIT有3个计时通道,每个通道都有其不同的用途:
(1) 通道0用来负责更新系统时钟。每当一个时钟滴答过去时,它就会通过IRQ0向 系统 产生一次时钟中断。
(2) 通道1通常用于控制DMAC对RAM的刷新。
(3) 通道2被连接到PC机的扬声器,以产生方波信号。
每 个通道都有一个向下减小的计数器,8254 PIT的输入时钟信号的频率是1.193181MHZ,也即一秒钟输入1193181个clock-cycle。每输入一个clock-cycle其时间 通道的计数器就向下减1,一直减到0值。因此对于通道0而言,当他的计数器减到0时,PIT就向系统产生一次时钟中断,表示一个时钟滴答已经过去了。计数 器为16bit,因此所能表示的最大值是65536,一秒内发生的滴答数是:1193181/65536=18.206482.
PIT的I/O端口:
0x40 通道0 计数器 Read/Write
0X41 通道1计数器 Read/Write
0X42 通道2计数器 Read/Write
0X43 控制字 Write Only
Note: 因PIT I/O端口是8位,而PIT相应计数器是16位,因此必须对PIT计数器进行两次读写。
8254 PIT的控制寄存器(0X43)的格式如下:
bit[7:6] — 通道选择位:00 ,通道0;01,通道1;10,通道2;11,read-back command,仅8254。
bit[5:4] – Read/Write/Latch锁定位,00,锁定当前计数器以便读取计数值;01,只读高字节;10,只读低字节;11,先高后低。
bit[3:1] – 设定各通道的工作模式。
000 mode0 当通道处于count out 时产生中断信号,可用于系统定时
001 mode1 Hardware retriggerable one-shot
010 mode2 Rate Generator。产生实时时钟中断,通道0通常工作在这个模式下
011 mode3 方波信号发生器
100 mode4 Software triggered strobe
101 mode5 Hardware triggered strobe
3. 时间戳计数器 TSC
从Pentium开始,所有的Intel 80x86 CPU就都包含一个64位的时间戳记数器(TSC)的寄存器。该寄存器实际上是一个不断增加的计数器,它在CPU的每个时钟信号到来时加1(也即每一个clock-cycle输入CPU时,该计数器的值就加1)。
汇编指令rdtsc可以用于读取TSC的值。利用CPU的TSC,操作系统通常可以得到更为精准的时间度量。假如clock-cycle的频率是400MHZ,那么TSC就将每2.5纳秒增加一次。
二. Linux时钟中断处理程序
1. 几个概念
(1)时钟周期(clock cycle)的频率:8253/8254 PIT的本质就是对由晶体振荡器产生的时钟周期进行计数,晶体振荡器在1秒时间内产生的时钟脉冲个数就是时钟周期的频率。Linux用宏 CLOCK_TICK_RATE来表示8254 PIT的输入时钟脉冲的频率(在PC机中这个值通常是1193180HZ),该宏定义在include/asm-i386/timex.h头文件中
#define CLOCK_TICK_RATE 1193180 kernel=2.4 &2.6

(2)时钟滴答(clock tick):当PIT通道0的计数器减到0值时,它就在IRQ0上产生一次时钟中断,也即一次时钟滴答。PIT通道0的计数器的初始值决定了要过多少时钟周期才产生一次时钟中断,因此也就决定了一次时钟滴答的时间间隔长度。
(3)时钟滴答的频率(HZ):1秒时间内PIT所产生的时钟滴答次数。 这个值也由PIT通道0的计数器初值决定的.Linux内核用宏HZ来表示时钟滴答的频率,而且在不同的平台上HZ有不同的定义值。对于ALPHA和 IA62平台HZ的值是1024,对于SPARC、MIPS、ARM和i386等平台HZ的值都是100。该宏在i386平台上的定义如下 (include/asm-i386/param.h):
#define HZ 100 kernel=2.4
#define HZ CONFIG_HZ kernel=2.6

(4)宏LATCH:定义要写到PIT通道0的计数器中的值,它表示PIT将隔多少个时钟周期产生一次时钟中断。公式计算:
LATCH=(1秒之内的时钟周期个数)÷(1秒之内的时钟中断次数)=(CLOCK_TICK_RATE)÷(HZ)
定义在<include/linux/timex.h>
#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)
(5)全局变量jiffies:用于记录系统自启动以来产生的滴答总数。启动时,kernel将该变量初始为0,每次时钟中断处理程序timer_interrupt()将该变量加1。因为一秒钟内增加的时钟中断次数等于Hz,所以jiffies一秒内增加的值也是Hz。由此可得系统运行时间是jiffies/Hz 秒。
jiffies定义于<linux/jiffies.h>中:
extern unsigned long volatile jiffies;
Note:在kernel 2.4,jiffies是32位无符号数;kernel 2.6,jiffies是64位无符号数。
(6)全局变量xtime: 结构类型变量,用于表示当前时间距UNIX基准时间1970-01-01 00:00:00的相对秒数值。当系统启动时,Kernel通过读取RTC Register中的数据来初始化系统时间(wall_time),该时间存放在xtime中。
void __init time_init (void) {
... ...
xtime.tv_sec = get_cmos_time ();
xtime.tv_usec = 0;
... ... }
Note:实时时钟RTC的最主要作用便是在系统启动时用来初始化xtime变量。
2.Linux的时钟中断处理程序
Linux下时钟中断处理由time_interrupt() 函数实现,主要完成以下任务:
l 获得xtime_lock锁,以便对访问的jiffies_64 (kernel2.6)和 xtime进行保护
l 需要时应答或重新设置系统时钟。
l 周期性的使用系统时间(wall_time)更新实时时钟RTC
l 调用体系结构无关的时钟例程:do_timer()。
do_timer()主要完成以下任务:
l 更新jiffies;
l 更新系统时间(wall_time),该时间存放在xtime变量中
l 执行已经到期的动态定时器
l 计算平均负载值
void do_timer(unsigned long ticks)
{
jiffies_64 += ticks;
update_process_times(user_mode(regs));
update_times (ticks);
}
static inline void update_times(unsigned long ticks)
{
update_wall_time ();
calc_load (ticks);
}
time_interrupt ():

static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) {
int count;
write_lock (&xtime_lock); //获得xtime_lock锁

if(use_cyclone)
mark_timeoffset_cyclone();
else if (use_tsc) {
rdtscl(last_tsc_low); //读TSC register到last_tsc_low
spin_lock (&i8253_lock); //对自旋锁i8253_lock加锁,对8254PIT访问
outb_p (0x00, 0x43);

count = inb_p(0x40);
count |= inb(0x40) << 8;
if (count > LATCH) {
printk (KERN_WARNING "i8253 count too high! resetting../n");
outb_p (0x34, 0x43);
outb_p (LATCH & 0xff, 0x40);
outb(LATCH >> 8, 0x40);
count = LATCH - 1;
}
spin_unlock (&i8253_lock);

if (count = = LATCH) {
count- -;
}

count = ((LATCH-1) - count) * TICK_SIZE;
delay_at_last_interrupt = (count + LATCH/2) / LATCH;
} //end use_tsc
do_timer_interrupt (irq, NULL, regs);
write_unlock(&xtime_lock);
}//end time_interrupt

do_timer_interrupt():
static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
……
do_timer(regs);
if((time_status & STA_UNSYNC)= =0&&xtime.tv_sec> last_rtc_update + 660 && xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 && xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
last_rtc_update = xtime.tv_sec - 600;
……
}
do_timer_interrupt()主要完成:调用do_timer()和判断是否需要更新CMOS时钟。更新CMOS时钟的条件如下:三个须同时成立
1.系统全局时间状态变量time_status中没有设置STA_UNSYNC标志,即Linux没有设置外部同步时钟(如NTP)
2.自从上次CMOS时钟更新已经过去11分钟。全局变量last_rtc_update保存上次更新CMOS时钟的时间.
3.由于RTC存在Update Cycle,因此应在一秒钟间隔的中间500ms左右调用set_rtc_mmss()函数,将当前时间xtime.tv_sec写回RTC中。
Note. Linux kernel 中定义了一个类似jiffies的变量wall_jiffies,用于记录kernel上一次更新xtime时,jiffies的值。

Summary: Linux kernel在启动时,通过读取RTC里的时间日期初始化xtime,此后由kernel通过初始PIT来提供软时钟。
时钟中断处理过程可归纳为:系统时钟system timer在IRQ0上产生中断;kernel调用time_interrupt();time_interrupt()判断系统是否使用TSC,若使用 则读取TSC register;然后读取PIT 通道0的计数值;调用do_time_interrupt(),实现系统时间更新.

④ linux下多个定时器的实现(C语言),麻烦高手指点哈嘛(急)

给你两个函数参考
omsTimer函数是处理定时事件,void(*handle)(union sigval v)参数就是处理事件的函数指针。
int omsSetTimer(timer_t *tId,int value,int interval)就是设置定时器。
按你说的,如果要同时起多个定时器,需要定义一个数组timer_t tm[n];int it[n];tm就是定时器结构,it用来记录对应的定时器是否已经使用,使用中的就是1,没用的就是0;
主进程消息来了就从it找一个没用的来omsSetTimer,如果收到终止消息,那omsSetTimer 定时时间为0
int omsTimer(timer_t *tId,int iValue,int iSeconds ,void(*handle)(union sigval v),void * param)
{
struct sigevent se;
struct itimerspec ts;
memset (&se, 0, sizeof (se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = handle;
se.sigev_value.sival_ptr = param;
if (timer_create (CLOCK_REALTIME, &se, tId) < 0)
{
return -1;
}
ts.it_value.tv_sec = iValue;
// ts.it_value.tv_sec =3;
//ts.it_value.tv_nsec = (long)(iValue % 1000) * (1000000L);
ts.it_value.tv_nsec = 0;
ts.it_interval.tv_sec = iSeconds;
//ts.it_interval.tv_nsec = (long)(iSeconds % 1000) * (1000000L);
ts.it_interval.tv_nsec = 0;
if (timer_settime(*tId, TIMER_ABSTIME, &ts, NULL) < 0)
{
return -1;
}
return 0;
}
int omsSetTimer(timer_t *tId,int value,int interval)
{
struct itimerspec ts;
ts.it_value.tv_sec =value;
//ts.it_value.tv_nsec = (long)(value % 1000) * (1000000L);
ts.it_value.tv_nsec = 0;
ts.it_interval.tv_sec = interval;
//ts.it_interval.tv_nsec = (long)(interval % 1000) * (1000000L);
ts.it_interval.tv_nsec = 0;
if (timer_settime(*tId, TIMER_ABSTIME, &ts, NULL) < 0)
{
return -1;
}
return 0;
}

阅读全文

与c定时器linux相关的资料

热点内容
服务器预留地址获取 浏览:1000
云库文件夹怎么设置 浏览:293
文件夹目录制作自动跳转 浏览:452
在哪个音乐app能听exo的歌 浏览:847
pdf超级加密 浏览:47
苹果手机app安装包怎么解压并安装 浏览:905
中原30系统源码 浏览:184
程序员如何遵纪守法 浏览:499
java的webxml配置 浏览:962
如何封包远程注入服务器 浏览:864
监测机构资金动向源码 浏览:967
android状态栏字体50 浏览:767
python如何判断文件后缀 浏览:126
龙空app哪里下 浏览:348
阿里云服务器搭建网盘 浏览:689
京东软件程序员 浏览:805
php游戏服务器框架 浏览:391
导航开发算法 浏览:430
为什么30岁还想转行程序员 浏览:380
推荐算法的使用 浏览:40