⑴ 理解89c52单片机开发板的电路原理图
这个图应该很清楚了,各个功能模块都归纳到一个方框里面:
1、LCD1602显示模块接口
2、LCD12864显示模块接口
3、LED接口
4、蜂鸣器接口
5、ISP下载接口
6、PL2303驱动电路
7、电源电路
8、数码管电路接口及独立按键接口
9、DS18B20温度传感器接口及红外接收电路接口
10、CPU
11、复位电路和时钟电路。
这个开发板缺少4*4矩阵键盘。
⑵ 单片机最小系统原理图解析 看完新手也能自己动手制作
单片机最小系统就是能够运行的最少元件组合,虽然这样过的单片机看起来非常简单,但实际操作并没有那么容易,特别是对于一些新手来说,没有手把手来教,确实还是有点小为难,不过没关系,这里提供单片机最小系统原理图,让你理解每一个步骤,就可以自己动手操作了。
一、单片机最小系统的特点
单片机最小系统是用最少的元件组成的单片机可以工作的系统,最大的特点局势系统资源完全开放,能够配合其他模块板或自行搭建用户电路可实现任意实验功能。单片机最小系统的借口设计灵活,使用起来就会非常方便,所以适合创新实践活动,下面来看看单片机最小系统原理图。
二、单片机最小系统原理图解析
上图就是单片机最小系统原理图,对于一个完整的电子设计,首先就要搞定供电模块,电源模块的稳定可靠是系统平稳运行的前提和基础,51单片机虽然应用范围最广,但实际上还有个弊端,那就是容易受到干扰而出现程序跑飞的现象,克服这个现象的重要手段就是为单片机最小系统配置一个稳定而可靠的电源供电模块。
单片机最小系统的电源供电模块可以通过计算机的USB接口供给,也可以用外部稳定的5V电源,电源电路中接入电源指示LED。图中R11为LED的限流电阻。S1 为电源开关。 上一页 0 /3 下一页
⑶ 51单片机最小系统原理图
单片机的最小系统是由组成单片机系统必需的一些元件构成的,除了单片机之外,还需要包括电源供电电路、时钟电路、复位电路。单片机最小系统电路(单片机电源和地没有标出)如图2-7所示。
图2-7 单片机最小系统
下面着重介绍时钟电路和复位电路。
1)时钟电路
单片机工作时,从取指令到译码再进行微操作,必须在时钟信号控制下才能有序地进行,时钟电路就是为单片机工作提供基本时钟的。单片机的时钟信号通常有两种产生方式:内部时钟方式和外部时钟方式。
内部时钟方式的原理电路如图2-8所示。在单片机XTAL1和XTAL2引脚上跨接上一个晶振和两个稳频电容,可以与单片机片内的电路构成一个稳定的自激振荡器。晶振的取值范围一般为0~24MHz,常用的晶振频率有6MHz、12 MHz、11.0592 MHz、24 MHz等。一些新型的单片机还可以选择更高的频率。外接电容的作用是对振荡器进行频率微调,使振荡信号频率与晶振频率一致,同时起到稳定频率的作用,一般选用20~30pF的瓷片电容。
外部时钟方式则是在单片机XTAL1引脚上外接一个稳定的时钟信号源,它一般适用于多片单片机同时工作的情况,使用同一时钟信号可以保证单片机的工作同步。
时序是单片机在执行指令时CPU发出的控制信号在时间上的先后顺序。AT89C51单片机的时序概念有4个,可用定时单位来说明,包括振荡周期、时钟周期、机器周期和指令周期。
振荡周期:是片内振荡电路或片外为单片机提供的脉冲信号的周期。时序中1个振荡周期定义为1个节拍,用P表示。
时钟周期:振荡脉冲送入内部时钟电路,由时钟电路对其二分频后输出的时钟脉冲周期称为时钟周期。时钟周期为振荡周期的2倍。时序中1个时钟周期定义为1个状态,用S表示。每个状态包括2个节拍,用P1、P2表示。
机器周期:机器周期是单片机完成一个基本操作所需要的时间。一条指令的执行需要一个或几个机器周期。一个机器周期固定的由6个状态S1~S6组成。
指令周期:执行一条指令所需要的时间称为指令周期。一般用指令执行所需机器周期数表示。AT89C51单片机多数指令的执行需要1个或2个机器周期,只有乘除两条指令的执行需要4个机器周期。
了解了以上几个时序的概念后,我们就可以很快的计算出执行一条指令所需要的时间。例如:若单片机使用12MHz的晶振频率,则振荡周期=1/(12MHz)=1/12us,时钟周期=1/6us,机器周期=1us,执行一条单周期指令只需要1us,执行一条双周期指令则需要2us。
2)复位电路
无论是在单片机刚开始接上电源时,还是运行过程中发生故障都需要复位。复位电路用于将单片机内部各电路的状态恢复到一个确定的初始值,并从这个状态开始工作。
单片机的复位条件:必须使其RST引脚上持续出现两个(或以上)机器周期的高电平。
单片机的复位形式:上电复位、按键复位。上电复位和按键复位电路如下。
图2-9 单片机复位电路
上电复位电路中,利用电容充电来实现复位。在电源接通瞬间,RST引脚上的电位是高电平(Vcc),电源接通后对电容进行快速充电,随着充电的进行,RST引脚上的电位也会逐渐下降为低电平。只要保证RST引脚上高电平出现的时间大于两个机器周期,便可以实现正常复位。
按键复位电路中,当按键没有按下时,电路同上电复位电路。如在单片机运行过程中,按下RESET键,已经充好电的电容会快速通过200Ω电阻的回路放电,从而使得RST引脚上的电位快速变为高电平,此高电平会维持到按键释放,从而满足单片机复位的条件实现按键复位。
单片机复位后各特殊功能寄存器的复位值见表2-11。
表2-11 单片机特殊功能寄存器复位值
寄存器 复位值 寄存器 复位值 寄存器 复位值
PC 0000H SBUF 不确定 TMOD 00H
B 00H SCON 00H TCON 00H
ACC 00H TH1 00H PCON 0***0000B
PSW 00H TH0 00H DPTR 0000H
IP ***00000B TL1 00H SP 07H
IE 0**00000B TL0 00H P0~P3 FFH
注:*表示无关位。
⑷ 单片机最小系统原理图解析 看完新手也能自己动手制作(2)
搞定了单片机最小系统的电源供给,再就准备单片机的置位和复位,就是为了把电路初始化到一个确定的状态。单片机复位电路原理是在单片机的复位引脚RST上外界一个电阻和电容,实现上电复位。当复位电平持续两个机器周期以上的时候,复位就有效,具体数值可以由RC电路计算出时间。
复位电路是由上电复位和按键复位两部分组成的。
1、上电复位
STC89系列单片及为高电平复位,一般都是在复位引脚RST上面连接一个电容到VCC,然后在连接一个电阻到GND,由此形成一芦芹个RC充放电回路,拉力保证单片机在上电时RST脚上有足够时间的高电平来进行复位,之明哗神后就能够回归到低电平进入正常工作状态。这个电阻和电容的典型值为10K和10uF。
2、按键复位
按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容激亏的充电,会保持一段时间的高电平来使单片机复位。
上一页 1 /3 下一页⑸ 51单片机最小系统原理图
我是一名单片机工程师,下面的讲解你参考一下.
.
51单片机共有40只引脚.下面这个就是最小系统原理图,就是靠这四个部分,这个单片机就可以运行起来了.(看下面的数字标记,1234)
.
这个脚是存储器使用选择脚,当这个脚接”地”时,那么就是告诉单片机,选择使用外部存储器,当这个脚接”5V”时,说明单片机使用内部存储器.
如果选择外部的存储器,太浪费单片机仅有的资源,所以这一脚永远接电源5V(如上图所示),使用单片机的内部存储器.
5 如果内部存储器不够容量,最多选择更高级的容量,就可以解决容量不够的问题了,就是这么简单
.
一天入门51单片机:点我学习
.
我是岁月哥,愿你学习愉快!