A. 51系列单片机是如何进行复位的
在单片机系统的应用中,我们经常需要用到复位技术来实现抗干扰。有的单片机(如8098)有专门的复位指令,某些增强型MCS-51系列单片机虽然没有复位指令,但片内集成了WATCHDOG电路,可以很容易实现复位。而普及型MCS-51系列单片机(如8031和8032)既无复位指令,又不带硬件WATCHDOS,如果不外接硬件WATCHDOG,就必须采用软件复位技术。所谓软件复位就是用一系列指令来模仿复位操作。在MCS-51系列单片机中,只要用指令使程序从起始地址(0x0000)开始执行,就可以复位单片机。
B. MCS-51型单片机常用的复位方法有几种应注意哪些事项
51单片机有五种常用的复位方法:
1.上电制动复位,注意:只要电源的的上升时间不超过1ms,就可以实现自动上电复位。
2.软件复位,注意:复位信号保持时间是编程人员预定的时间。
3.按键电平复位,注意:复位信号保持时间大于2个时钟周期。
4.外部脉冲复位,注意:复位信号保持时间大于2个时钟周期。
5.看门狗溢出复位,注意:复位信号保持时间也是编程人员预定的时间。
C. 单片机是如何控制实现复位功能的
基本就是通电复位
老的单片机很多都没有复位指令,靠悔旦外围引脚进行硬件复位
比较新的有复位寄存器或复位指令
向相衫前搜应寄存器写入特定指令就可以复位,并且可能有多种复位方式如:中断、看门狗溢出等或历
D. 谁能帮我分析一下单片机手动复位电路原理
单片机手动复位电路原理(以高电平复位为例):
当按下S1按键,电容器C被短路放电,电源通过S1按键开关,直接加到RST(复位端),就是高电平直接送入RST,此时单片机进入“复位状态”。
当放开S1按键,电源开始对C电容器充电,此时,充电电流在电阻R上,形成高电平送到RST,单片机仍然是“复位状态”;稍后,充电结束,电流下降为0,电阻R上的电压也降为0,RST也降为低电平,单片机开始正常工作。
另外低电平复位,只是元件位置不同
,工作原理是相同的。
E. 单片机如何复位
单片机复位就两种方式,一个是硬件复位,一个是软件复位。
硬件复位就是靠外部的硬件强行把复位管教置为低电平,例如上电的时候,还有按键。
上电之所以要复位是因为在接通电源的一瞬间,给单片机的电压是不稳定的,电压不稳定就会导致程序跑飞,从而出现意想不到的情况。而常用的阻容复位(就是一个电阻和电容串联,电阻接VCC,电容接地,复位管教接中间的那种。),当上电的时候,电源经电阻向电容充电,电容看作短路,所以复位管教为低电平,使得单片机在这段时间内不停的复位。当电源稳定后,电容已经充电完成,相当于开路,复位管教为高电平,单片机正常运行程序。
软件复位就是利用单片机内部的看门狗来防止程序跑飞,看门狗就是个定时器,每个机器周期,它就加一,当它记满时,就会让单片机复位。所以要要定时重装看门狗。正常情况下,不能让他溢出。这叫喂狗。当单片机受到外界的干扰,使得程序跑飞,跑出while(1)大循环的时候,由于无法执行喂狗的动作,单片机就会复位,从而不会出现单片机死机的情况。
F. 单片机的三种复位方式
一、高电平复位
复位电路的工作原理 在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2us就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。
(1)、上电复位
电容的的大小是10uf,电阻的大小是10k。所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。
(2) 按键复位
在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位。
总结: 1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。 2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。
二、低电平复位
在使用STM32芯片时,常用的复位方式为按键复位,且为低电平复位。其原理与上述高电平复位相反,分析也挺简单,这里不在赘述,只给出按键复位原理
单片机的复位引脚RST(全称RESET)出现2个机器周期以上的复位电平时,单片机就执行复位操作。如果RST持续为复位电平,单片机就处于循环复位状态。当单片机处于正常电平时就正常转入执行程序。
当单片机上电瞬间由于电容电压不能突变会使电容两边的电位相同,此时RST为低电平,之后随着时间推移电源通过电阻对电容充电,充满电时RST为高电平。正常工作为高电平,低电平复位。即上电低电平,然后转向高电平。当单片机上电瞬间由于电容电压不能突变会使电容两边的电位相同,此时RST为高电平,之后随着时间推移电源负极通过电阻对电容放电,放完电时RST为低电平。正常工作为低电平,高电平复位。