⑴ linux为什么区分内核空间和用户空间
程序如果要被CPU执行,就得编译成CPU可以执行的指令,一大堆的程序就变成了一堆的指令。
一个操作系统它也是一堆程序组成的,可以想象CPU的指令是很多的,但是这么多的指令中,有些指令涉及到系统底层的东西,如果有些指令错用或者使用不当是非常危险的,比如清内存、设置时钟、修改用户访问权限、分配系统资源等等,可能导致系统崩溃。
CPU将这些指令进行了分类,分为 特权指令 和 非特权指令 ,不让所有程序都能使用所有指令,如果所有程序都能使用,那系统崩溃就会变得非常常见了。
操作系统的核心是内核,它是独立于普通的应用程序,负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性,所以一定要埋悄铅保证内核的安全。
为了保护内核的安全,操作系统一般都限制用户进程不能直接操作内核,在32位操作系统总的地址空间4G(2^32 = 4GB),实现这个限制的方式就是操作系统将总的地址空间分为两个部分,对于Linux操作系统:
《 你该知道你写的程序的内存布局 》
总之,有1G的内核空间是每个进程共享的,剩下的3G是进程自己使用的。
在内核态下,CPU可以执行指令系统的全集,也就是说内核态进程可以调用系统的一切资源,但是特权指令只能在内核态下执行,它不直接提供给用户使用,用户态下只能使用非特权指令,也就是说用户态进程只能执行简单运算,不能直接调用系统资源。
那么CPU如何知道当前是否可以使用特权指令?
Linux操作系统通过区分内核空间和用户空间的这种设计,将操作系统代码和用户程序代码分开,这样即使在某一个应用程序出错,也不会影响到操作系统,再说,Linux操作系统是多任务系统,其它应用程弯好序不也还能运行。
现代操作系统基本上都是分内核空间和用户空间的做法,来 保护操作系统自身的安全性和稳定性,这也是区分内核空间和用户空间的本质。
你也可以继续阅读 点击 以下文运信章,下面是我推荐给大家的几篇文章:
1.《 竟然把通信协议讲的如此通俗? 》
2.《 c++如何学习?赶紧收藏这些好书 》
3.《 select和epoll的前世今生 》
4.《 彻底明白Linux硬链接和软链接 》
⑵ linux系统为什么给内核分配1G不是500M为什么不是2:2分配
所有进程都必须占用一定数量的内存,这些内存用来存放从磁盘载入的程序代码,或存放来自用户输入的数据等。内存可以提前静态分配和统一回收,也可以按需动态分配和回收。
对于普通进程对应的内存空间包含5种不同的数据区:
代码段
数据段
BSS段
堆:动态分配的内存段,大小不固定,可动态扩张(malloc等函数分配内存),或动态缩减(free等函数释放);
栈:存放临时创建的局部变量;
其中物理地址空间中除了896M(ZONE_DMA + ZONE_NORMAL)的区域是绝对的物理连续,其他内存都不是物理内存连续。在虚拟内核地址空间中的安全保护区域的指针都是非法的,用于保证指针非法越界类的操作,vm_struct是连续的虚拟内核空间,对应的物理页面可以不连续,地址范围(3G + 896M + 8M) ~ 4G;另外在虚拟用户空间中 vm_area_struct同样也是一块连续的虚拟进程空间,地址空间范围0~3G。
⑶ Linux进程内存管理
对于包含MMU的处理器而言,Linux系统提供了复杂的存储管理系统,使得进程所能访问的内存达到4GB。在Linux系统中,进程的4GB内存空间被分为两个部分——用户空间与内核空间。用户空间的地址一般分布为0~3GB(即PAGE_OFFSET,在Ox86中它等于OxC0000000),这样,剩下的3~4GB为内核空间,用户进程通常只能访问用户空间的虚拟地址,不能访问内核空间的虚拟地址。用户进程只有通过系统调用(代表用户进程在内核态执行)等方式才可以访问到内核空间。
每个进程的用户空间都是完全独立、互不相干的,用户进程各自有不同的页表。而内核空间是由内核负责映射,它并不会跟着进程改变,是固定的。内核空间的虚拟地址到物理地址映射是被所有进程共享的,内核的虚拟空间独立于其他程序。
Linux中1GB的内核地址空间又被划分为物理内存映射区、虚拟内存分配区、高端页面映射区、专用页面映射区和系统保留映射区这几个区域。
对于x86系统而言,一般情况下,物理内存映射区最大长度为896MB,系统的物理内存被顺序映射在内核空间的这个区域中。当系统物理内存大于896MB时,超过物理内存映射区的那部分内存称为高端内存(而未超过物理内存映射区的内存通常被称为常规内存),内核在存取高端内存时必须将它们映射到高端页面映射区。Linux保留内核空间最顶部FIXADDR_TOP~4GB的区域作为保留区。
当系统物理内存超过4GB时,必须使用CPU的扩展分页(PAE)模式所提供的64位页目录项才能存取到4GB以上的物理内存,这需要CPU的支持。加入了PAE功能的Intel Pentium Pro及以后的CPU允许内存最大可配置到64GB,它们具备36位物理地址空间寻址能力。
由此可见,对于32位的x86而言,在3~4GB之间的内核空间中,从低地址到高地址依次为:物理内存映射区→隔离带→vmalloc虚拟内存分配器区→隔离带→高端内存映射区→专用页面映射区→保留区。
⑷ Linux内核:用户空间与内核空间的数据传递方式
Linux采用了段页式存储管理方式,Linux的虚拟地址空间为0~4G,如图1,Linux内核将这4G空间分为两部分,0~3G(0xC0000000~0xFFFFFFFF)的部分为用户空间,供用户进程使用,3~4G(0x00000000~0xBFFFFFFF)的部分为内核空间,专门供内核使用[4]。
八种用户空间与内核空间的数据交换方式,这八种方式各有优劣,下面就每种方式的优劣做一下对比:
⑸ linux内核主要由哪几个部分组成
一个完整的Linux内核一般由5部分组成,它们分别是内存管理、进程管理、进程间通信、虚拟文件系统和网络接口。
1、内存管理
内存管理主要完成的是如何合理有效地管理整个系统的物理内存,同时快速响应内核各个子系统对内存分配的请求。
Linux内存管理支持虚拟内存,而多余出的这部分内存就是通过磁盘申请得到的,平时系统只把当前运行的程序块保留在内存中,其他程序块则保留在磁盘中。在内存紧缺时,内存管理负责在磁盘和内存间交换程序块。
2、进程管理
进程管理主要控制系统进程对CPU的访问。当需要某个进程运行时,由进程调度器根据基于优先级的调度算法启动新的进程。:Linux支持多任务运行,那么如何在一个单CPU上支持多任务呢?这个工作就是由进程调度管理来实现的。
在系统运行时,每个进程都会分得一定的时间片,然后进程调度器根据时间片的不同,选择每个进程依次运行,例如当某个进程的时间片用完后,调度器会选择一个新的进程继续运行。
由于切换的时间和频率都非常的快,由此用户感觉是多个程序在同时运行,而实际上,CPU在同一时间内只有一个进程在运行,这一切都是进程调度管理的结果。
3、进程间通信
进程间通信主要用于控制不同进程之间在用户空间的同步、数据共享和交换。由于不用的用户进程拥有不同的进程空间,因此进程间的通信要借助于内核的中转来实现。
一般情况下,当一个进程等待硬件操作完成时,会被挂起。当硬件操作完成,进程被恢复执行,而协调这个过程的就是进程间的通信机制。
4、虚拟文件系统
Linux内核誉衫铅中的虚拟文件系统用一个通用的文件模型表示了各种不同的文件系统,这个文件模型屏蔽了很多具体文件系统的差异,使Linux内核支持很多不同的文件系统。
这个文件系统可以分为逻辑文件系统和设备驱动程序:逻辑文件系统指Linux所支持的文件系统,例如ext2、ext3和fat等;设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。
5、网络接口
网络接口提供了对各种网络标准的实现和各种网络硬件的支持。网络接口一般分为网络协议庆好和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。
网络设备驱动程序则主要负责与硬件设备进行通信,每一种可能的网络硬件设备都有相应的设备驱动程序。
(5)linux内核进程空间扩展阅读:
Linux 操作系统的诞生、发展和成长过程始终依赖着五个重要支柱:UNIX操作系统、MINIX操作系统、GNU计划、POSIX标准和Internet 网络。
1981 年IBM公司推出微型计算机IBM PC。
1991年,GNU计划已经开发出了许多工具软件,最受期盼的GNU C编译器已经出现,GNU的操作系统核心HURD一直处于实验阶段,没有任何可用性,实质上也没能开发出完整的GNU操作系统,但是GNU奠定了Linux用户基础和开发环境。
1991年初,林纳斯·托瓦兹开始在一台386sx兼容微机上学习minix操作系统。1991年4月,林纳斯·托瓦兹开始酝酿并着手编制自己的操作系统。
1991 年4 月13 日在comp.os.minix 上发布说自己已经成功地将bash 移植到了minix 上,而且已经爱不释手、不能离开这个shell软件了。
1993年,大约有100余名程序员参与了Linux内核代码编写/修改工作,其中核心组由5人组成,此时Linux 0.99的代码大约有十万行,用户大约有10万左右。
1994年3月,Linux1.0发布,代码量17万行,当时是按照完全自由免费的协议发布,随后正式采用GPL协议。
1995年1月,Bob Young创办了RedHat(小红帽),以GNU/Linux为核心,集成了400多个源代码开放的程序模块,搞出了一种冠以品牌的Linux,即RedHat Linux,称为Linux"发行版",在市场上出售。这在经营模式上是一种创举。
2001年1月,Linux 2.4发布,它进一步地提升了SMP系统的扩展性,同时它也集成了很多用于支持桌面系统的特性:USB,PC卡(PCMCIA)的支持,内置的即插即用,等等功能。
2003年12月,Linux 2.6版内核发布,相对于2.4版内核2.6在对系统的支持都有很大的变化。
2004年的第1月,SuSE嫁到了Novell,SCO继续顶着骂名四处强行“塌棚化缘”, Asianux, MandrakeSoft也在五年中首次宣布季度赢利。3月,SGI宣布成功实现了Linux操作系统支持256个Itanium 2处理器。