1. 单片机ATmega8L管脚图及各脚说明分别是什么
单片机ATmega8L管脚图:
单片机ATmega8L各个管脚说明:
1、2脚:天线端。
3、4脚:增益调节端,调节外接电阻可调节灵敏度,即调节检测距离。
5脚:触发禁止控制端,当5脚电压<0.3UDD时,禁止触发;当5脚电压>0.3UDD时,允许触发。
6脚:接电源滤波电容器端。
7脚:电源负端USS。
8脚:重复触发控制端,8脚为高电平时,允许重复触发;低电平时,不允许重复触发。
9、10脚:输出延迟定时器外接电阻器端。
11脚:控制信号输出端,高电平有效。
12、13脚:输出封锁定时器外接电阻器端。
14脚:电源正端UDD。
2. 请问从电压互感器、电流互感器出来的信号怎样送到单片机中呢
你可以去读一些测量技术方面的书。例如数字万用表电路中就有交流电流或电压的测量方法。
通常方法是1,将互感器送来的信号。进行衰减成需要的信号,2进行线性整流变换成与信号成比例变化的直流信号。3进行AD转换
电压互感器输出是100伏需要先衰减,电流互感器输出是5A电流需要电流电压变换
3. 串联型稳压电路调整管分析
这个电路是PWM调整型的,b点电压为比较基准三角波,从单片机的I/O口输出,由单片机设置。电路中Q5为调整管,R17+R18为取样分压器,U5A为电压比较器,产生PWM信号,C12+R19为负反馈网络,使放大器具有低通特性,以滤除三角波的高次谐波。这个电路也可以改为线性调整型的,把C12短路,b点输入由单片机D/A口输出的模拟电压即可。
当某原因使+24V升高而致使Vcc2升高时:+24V↑→Vcc2↑→Ua↑→Uo脉宽↓→Ug5脉宽↑→Uds↓→Vcc2↓;
当某原因使+24V下降而致使Vcc2下降时则相反;
当某原因使Vcc2升高时(如负载减轻等):
Vcc2↑→Ua↑→Uo脉宽↓→Ug5脉宽↑→Uds↓→Vcc2↓;
当某原因使Vcc2降低时(如负载加重等)则相反。
4. 单片机编号的意义,比如一片AT89C51正面的编号是:AT89C51 24PU 0644,反面是:4H3576-19651P 1-U0446
AT:ATMEL公司,
89:89系列的单片机,
C:CMOS,互补金属氧化物半导体,说明这是一块可读写芯片,
51:单片机型号,后面的1是指此单片机的内部存储空间为1×4=4KB,
24:晶振支持的最高频销渣率为24MHz,
P:塑租世料双列直插DIP封装,温度-40至+85℃,
U:无铅元件,
0644:2006年第44周生产的,
另外,反面的数字应该是这块单片机的识别码,就像弊斗肢书籍的条形码一样!
5. 基于单片机的数字时钟设计开题报告
//我这里有一个定时的闹钟,你把蜂鸣器的中断改为LED就行了,可以通过P2^0--P2^3实现秒表的显示和以及调时调分和调节闹钟以及闹钟的开关,有问题可以给我留言QQ834589429
#include<reg52.h>//包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义
codeunsignedchartab[]=
{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};
//共阴数码管0-9
sbitA1=P2^0;
sbitA2=P2^1;
sbitA3=P2^2;
sbitA4=P2^3;
sbitbeep=P1^4;
unsignedcharShiwan;
unsignedcharWanwei;
unsignedcharQianwei;
unsignedcharBaiwei;
unsignedcharShiwei;//定义十位
unsignedcharGewei,Naoling1,Naoling2,Naoling3,Naoling4;//定义个位
staticunsignedcharhour=12,minute=30,second=0,count=0;
staticunsignedcharalarmhour=12,alarmminute=29,i=0,j=0,k;
/******************************************************************/
/*延时函数*/
/******************************************************************/
voiddelay(unsignedintcnt)
{
while(--cnt);
}
voidxianshi(void)
{
Gewei=tab[second%10];//个位显示处理
Shiwei=tab[second/10];//十位显示值处理
if(second%2==0)
{
Baiwei=tab[minute%10];
Qianwei=tab[minute/10];//千位
}
else
{
Baiwei=(tab[minute%10]|0x80);//百位显示处理:加点的字码
Qianwei=(tab[minute/10]|0x80);
}
if(second%2!=0)
{
Wanwei=tab[hour%10];
Shiwan=tab[hour/10];
}
else
{
Wanwei=(tab[hour%10]|0x80);
Shiwan=(tab[hour/10]|0x80);
}
Naoling1=~tab[alarmhour%10];
Naoling2=~tab[alarmhour/10];
Naoling3=~tab[alarmminute%10];
Naoling4=~tab[alarmminute/10];
}
voidtimer0()interrupt3using1
{
TH1=0x3c;//中断设置初始化
TL1=0xb0;
if(alarmhour==hour&&alarmminute==minute&&j==1)
{
beep=0;
}
}
/******************************************************************/
/*定时器中断函数*/
/******************************************************************/
voidtimer1()interrupt1using0
{
TH0=0xd8;//重新赋值
TL0=0xf0;
count++;
xianshi();
if(count==99)//100x10ms=1S,大致延时时间
{
count=0;
second++;//秒加1
if(second==60)
minute++;
{
if(second==60)
second=0;
{
if(minute==60)
hour++;
{
if(minute==60)
minute=0;
{
if(hour==24)
hour=0;
}
}
}
}
}
}
/******************************************************************/
/*主函数*/
/******************************************************************/
voidmain()
{
TMOD|=0x01;//定时器设置10msin12Mcrystal,工作在模式1,16位定时
TH0=0xd8;
TL0=0xf0;
IE=0x82;//打开中断
TR0=1;//打开定时开关
xianshi();
EA=1;ET0=1;TMOD|=0x21;TR0=1;//开中断总开关,计数器0允许中断,设置中断模式,启动计数器0
ET1=1;TR1=1;
while(1)
{
{
if(!A3)
{
delay(10000);
if(!A3)
{
i++;if(i==7)i=0;
xianshi();
}
}
}
{
if(!A4)
{
delay(10000);
if(!A4)
{
i--;if(i==255)i=6;
xianshi();
}
}
}
switch(i)
{
case0://正常显示控制
{
P1=0x1e;//片选个位
P0=~Baiwei;//显示个位
delay(300);//短暂延时
P1=0x1d;//片选十位
P0=~Qianwei;//显示十位
delay(300);//短暂延时
P1=0x1b;//片选百位
P0=~Wanwei;//显示百位
delay(300);//短暂延时
P1=0x17;//片选千位
P0=~Shiwan;//显示千位
delay(300);//短暂延时
P1=0x1f;
P0=0xff;
delay(300);
};break;
case1://调分控制
{
if(second%2!=0)
{
P1=0x1e;//片选个位
P0=~Baiwei;//显示个位
delay(300);//短暂延时
P1=0x1d;//片选十位
P0=~Qianwei;//显示十位
delay(300);//短暂延时
P1=0x1f;
P0=0xff;
delay(300);
}
else
delay(300);
delay(300);
{
if(!A1)
{
delay(10000);//消抖
if(!A1)
{
minute++;if(minute==61)minute=0;
xianshi();
}
}//按键处理
}
{
if(!A2)
{
delay(10000);//消抖
if(!A2)
{
minute--;if(minute==255)minute=59;
xianshi();
}
}
}
};break;
case2://调时控制
{
if(second%2==0)
{
P1=0x1b;//片选百位
P0=~Wanwei;//显示百位
delay(300);//短暂延时
P1=0x17;//片选千位
P0=~Shiwan;//显示千位
delay(300);//短暂延时
P1=0x1f;
P0=0xff;
delay(300);
}
else
delay(300);
delay(300);
{
if(!A1)
{
delay(10000);//消抖
if(!A1)
{
hour++;if(hour==24)hour=0;
xianshi();
}
}//按键处理
}
{
if(!A2)
{
delay(10000);//消抖
if(!A2)
{
hour--;if(hour==255)hour=23;
xianshi();
}
}
}
};break;
case3://秒显示控制
{
P1=0x1e;//片选个位
P0=~Gewei;//显示个位
delay(300);//短暂延时
P1=0x1d;//片选十位
P0=~Shiwei;//显示十位
delay(300);//短暂延时
P1=0x1f;
P0=0xff;
delay(300);
delay(300);
delay(300);
};break;
case4://闹钟控制
{
if((!A1)||(!A2))
{
delay(10000);
if((!A1)||(!A2))j++;
if(j==2)
j=0;
}
switch(j)
{
case0:{
P1=0x1e;//片选个位
P0=~0x71;//显示个位
delay(300);//短暂延时
P1=0x1d;//片选十位
P0=~0x71;//显示十位
delay(300);//短暂延时
P1=0x1b;//片选百位
P0=~0x3f;//显示百位
delay(300);//短暂延时
P1=0x17;//片选千位
P0=~0x40;//显示千位
delay(300);//短暂延时
delay(300);
};break;
case1:{
P1=0x1e;//片选个位
P0=~0x37;//显示个位
delay(300);//短暂延时
P1=0x1d;//片选十位
P0=~0x3f;//显示十位
delay(300);//短暂延时
P1=0x1b;//片选百位
P0=0xff;//显示百位
delay(300);//短暂延时
P1=0x17;//片选千位
P0=~0x40;//显示千位
delay(300);//短暂延时
delay(300);
}
}
};break;
case5://闹铃分钟调整
{
{
P1=0x1e;
P0=Naoling3;
delay(300);
P1=0x1d;
P0=Naoling4;
delay(300);
P1=0x1f;
P0=0xff;
delay(300);
delay(300);
delay(300);
}
{
if(!A1)
{
delay(10000);//消抖
if(!A1)
{
alarmminute++;if(alarmminute==61)alarmminute=0;
}
}//按键处理
}
{
if(!A2)
{
delay(10000);//消抖
if(!A2)
{
alarmminute--;if(alarmminute==255)alarmminute=59;
}
}
}
};break;
case6://闹铃小时调整
{
{
P1=0x1b;
P0=Naoling1;
delay(300);
P1=0x17;
P0=Naoling2;
delay(300);
P1=0x1f;
P0=0xff;
delay(300);
delay(300);
delay(300);
}
{
if(!A1)
{
delay(10000);//消抖
if(!A1)
{
alarmhour++;if(alarmhour==24)alarmhour=0;
}
}//按键处理
}
{
if(!A2)
{
delay(10000);//消抖
if(!A2)
{
alarmhour--;if(alarmhour==255)alarmhour=23;
}
}
};break;
default:break;
}
}
}
}
6. 51单片机电路中,共阴极发光二极管,阴极必须接什么
阴极接单片机IO口。
解释分析:
共阴极二极管:二极管的阳极接VCC(电源正极),阴极接单片机IO口,IO口给低电平(0),二极管才工作,故称共阴极二极管。
共阳极二极管:二极管的阴极极接GND(接地),阳极接单片机IO口,IO口给高电平(1),二极管才工作,故称共阳极二极管。
此LED(发光二极管)为共阴极二极管。
整流电路
在分析整流电路时,为了简化分析过程,一般假设负载为纯阻性负载,其他类型负载时输出会有所不。假设整流二极管为理想二极管,即施加正向电压时导通且正向电阻为零,加反向电压时截止且反向电流为零,变压无损耗为理想变压器。
对整流电路主要是研究输出脉动直流电压Uo、输出电流的平均值Io、脉动系数γ和整流二极管承受的最大整流平均电流IF和最高反向工作电压URM的分析等问题。