A. 学习单片机用什么软件
keil最流行
单片机开发中除必要的硬件外,同样离不开软件,我们写的汇编语言源程序要变为CPU可以执行的机器码有两种方法,一种是手工汇编,另一种是机器汇编,目前已极少使用手工汇编的方法了。机器汇编是通过汇编软件将源程序变为机器码,用于MCS-51单片机的汇编软件有早期的A51,随着单片机开发技术的不断发展,从普遍使用汇编语言到逐渐使用高级语言开发,单片机的开发软件也在不断发展,Keil软件是目前最流行开发MCS-51系列单片机的软件,这从近年来各仿真机厂商纷纷宣布全面支持Keil即可看出。Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(uVision)将这些部份组合在一起。运行Keil软件需要Pentium或以上的CPU,16MB或更多RAM、20M以上空闲的硬盘空间、WIN98、NT、WIN2000、WINXP等操作系统。掌握这一软件的使用对于使用51系列单片机的爱好者来说是十分必要的,如果你使用C语言编程,那么Keil几乎就是你的不二之选(目前在国内你只能买到该软件、而你买的仿真机也很可能只支持该软件),即使不使用C语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会令你事半功倍。
目前最新的版本是keil uv3,可下载破解版本,否则有容量限制。
B. 单片机系统软件抗干扰方法
在提高硬件系统抗干扰能力的同时 软件抗干扰以其设计灵活 节省硬件资源 可靠性好越来越受到重视 下面以MCS 单片机系统为例 对微机系统软件抗干扰方法进行研究
软件抗干扰方法的研究
在工程实践中 软件抗干扰研究的内容主要是 一 消除模拟输入信号的嗓声(如数字滤波技术) 二 程序运行混乱时使程序重入正轨的方法 本文针对后者提出了几种有效的软件抗干扰方法
指令冗余
CPU取指令过程是先取操作码 再取操作数 当PC受干扰出现错误 程序便脱离正常轨道 乱飞 当乱飞到某双字节指令 若取指令时刻落在操作数上 误将操作数当作操作码 程序将出错 若 飞 到了三字节指令 出错机率更大
在关键地方人为插入一些单字节指令 或将有效单字节指令重写称为指令冗余 通常是在双字节指令和三字节指令后插入两个字节以上的NOP 这样即使乱飞程序飞到操作数上 由于空操作指令NOP的存在 避免了后面的指令被当作操作数执行 程序自动纳入正轨
此外 对系统流向起重要作用的指令如RET RETI LCALL LJMP JC等指令之前插入两条NOP 也可将乱飞程序纳入正轨 确保这些重要指令的执行
拦截技术
所谓拦截 是指将乱飞的程序引向指定位置 再进行出错处理 通常用软件陷阱来拦截乱飞的程序 因此先要合理设计陷阱 其次要将陷阱安排在适当的位置
软件陷阱的设计
当乱飞程序进入非程序区 冗余指令便无法起作用 通过软件陷阱 拦截乱飞程序 将其引向指定位置 再进行出错处理 软件陷阱是指用来将捕获的乱飞程序引向复位入口地址 H的指令 通常在EPROM中非程序区填入以下指令作为软件陷阱
NOP
NOP
LJMP H
其机器码为
陷阱的安排
通常在程序中未使用的EPROM空间填 最后一条应填入 当乱飞程序落到此区 即可自动入轨 在用户程序区各模块之间的空余单元也可填入陷阱指令 当使用的中断因干扰而开放时 在对应的中断服务程序中设置软件陷阱 能及时捕获错误的中断 如某应用系统虽未用到外部中断 外部中断 的中断服务程序可为如下形式
NOP
NOP
RETI
返回指令可用 RETI 也可用 LJMP H 如果故障诊断程序与系统自恢复程序的设计可靠 完善 用 LJMP H 作返回指令可直接进入故障诊断程序 尽早地处理故障并恢复程序的运行
考虑到程序存贮器的容量 软件陷阱一般 K空间有 个就可以进行有效拦截
软件 看门狗 技术
若失控的程序进入 死循环 通常采用 看门狗 技术使程序脱离 死循环 通过不断检测程序循环运行时间 若发现程序循环时间超过最大循环运行时间 则认为系统陷入 死循环 需进行出错处理
看门狗 技术可由硬件实现 也可由软件实现 在工业应用中 严重的干扰有时会破坏中断方式控制字 关闭中断 则系统无法定时 喂狗 硬件看门狗电路失效 而软件看门狗可有效地解决这类问题
笔者在实际应用中 采用环形中断监视系统 用定时器T 监视定时器T 用定时器T 监视主程序 主程序监视定时器T 采用这种环形结构的软件 看门狗 具有良好的抗干扰性能 大大提高了系统可靠性 对于需经常使用T 定时器进行串口通讯的测控系统 则定时器T 不能进行中断 可改由串口中断进行监控(如果用的是MCS 系列单片机 也可用T 代替T 进行监视) 这种软件 看门狗 监视原理是 在主程序 T 中断服务程序 T 中断服务程序中各设一运行观测变量 假设为MWatch T Watch T Watch 主程序每循环一次 MWatch加1 同样T T 中断服务程序执行一次 T Watch T Watch加1 在T 中断服务程序中通过检测T Watch的变化情况判定T 运行是否正常 在T 中断服务程序中检测MWatch的变化情况判定主程序是否正常运行 在主程序中通过检测T Watch的变化情况判别T 是否正常工作 若检测到某观测变量变化不正常 比如应当加 而未加 则转到出错处理程序作排除故障处理 当然 对主程序最大循环周期 定时器T 和T 定时周期应予以全盘合理考虑 限于篇幅不赘述
系统故障处理 自恢复程序的设计
单片机系统因干扰复位或掉电后复位均属非正常复位 应进行故障诊断并能自动恢复非正常复位前的状态
非正常复位的识别
程序的执行总是从 H开始 导致程序从 H开始执行有四种可能 一 系统开机上电复位 二 软件故障复位 三 看门狗超时未喂狗硬件复位 四 任务正在执行中掉电后来电复位 四种情况中除第一种情况外均属非正常复位 需加以识别
硬件复位与软件复位的识别
此处硬件复位指开机复位与看门狗复位 硬件复位对寄存器有影响 如复位后PC= H SP= H PSW= H等 而软件复位则对SP SPW无影响 故对于微机测控系统 当程序正常运行时 将SP设置地址大于 H 或者将PSW的第 位用户标志位在系统正常运行时设为 那么系统复位时只需检测PSW 标志位或SP值便可判此是否硬件复位 图 是采用PSW 作上电标志位判别硬 软件复位的程序流程图
图 硬 软件复位识别流程图
此外 由于硬件复位时片内RAM状态是随机的 而软件复位片内RAM则可保持复位前状态 因此可选取片内某一个或两个单元作为上电标志 设 H用来做上电标志 上电标志字为 H 若系统复位后 H单元内容不等于 H 则认为是硬件复位 否则认为是软件复位 转向出错处理 若用两个单元作上电标志 则这种判别方法的可靠性更高
开机复位与看门狗故障复位的识别
开机复位与看门狗故障复位因同属硬件复位 所以要想予以正确识别 一般要借助非易失性RAM或者EEROM 当系统正常运行时 设置一可掉电保护的观测单元 当系统正常运行时 在定时喂狗的中断服务程序中使该观测单元保持正常值(设为 AAH) 而在主程中将该单元清零 因观测单元掉电可保护 则开机时通过检测该单元是否为正常值可判断是否看门狗复位
正常开机复位与非正常开机复位的识别
识别测控系统中因意外情况如系统掉电等情况引起的开机复位与正常开机复位 对于过程控制系统尤为重要 如某以时间为控制标准的测控系统 完成一次测控任务需 小时 在已执行测控 分钟的情况下 系统电压异常引起复位 此时若系统复位后又从头开始进行测控则会造成不必要的时间消耗 因此可通过一监测单元对当前系统的运行状态 系统时间予以监控 将控制过程分解为若干步或若干时间段 每执行完一步或每运行一个时间段则对监测单元置为关机允许值 不同的任务或任务的不同阶段有不同的值 若系统正在进行测控任务或正在执某时间段 则将监测单元置为非正常关机值 那么系统复位后可据此单元判系统原来的运行状态 并跳到出错处理程序中恢复系统原运行状态
非正常复位后系统自恢复运行的程序设计
对顺序要求严格的一些过程控制系统 系统非正常复位否 一般都要求从失控的那一个模块或任务恢复运行 所以测控系统要作好重要数据单元 参数的备份 如系统运行状态 系统的进程值 当前输入 输出的值 当前时钟值 观测单元值等 这些数据既要定时备份 同时若有修改也应立即予以备份
当在已判别出系统非正常复位的情况下 先要恢复一些必要的系统数据 如显示模块的初始化 片外扩展芯片的初始化等 其次再对测控系统的系统状态 运行参数等予以恢复 包括显示界面等的恢复 之后再把复位前的任务 参数 运行时间等恢复 再进入系统运行状态
应当说明的是 真实地恢复系统的运行状态需 要极为细致地对系统的重要数据予以备份 并加以数据可靠性检查 以保证恢复的数据的可靠性
其次 对多任务 多进程测控系统 数据的恢复需考虑恢复的次序问题 笔者实际应用的数据恢复过程流程图如图 所示
图 系统自恢复程序流程图
图中恢复系统基本数据是指取出备份的数据覆盖当前的系统数据 系统基本初始化是指对芯片 显示 输入输出方式等进行初始化 要注意输入输出的初始化不应造成误动作 而复位前任务的初始化是指任务的执行状态 运行时间等
结束语
lishixin/Article/program/qrs/201311/11074
C. 单片机抗干扰
数字电路、单片机的抗干扰设计
在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性 的要求,避免在
设计完成后再去进行抗干扰的补救措施。形成干扰的基本要素有三个:
(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:/dt, di/dt大的地
方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可 能成为干扰源。
(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传 播路径是通过
导线的传导和空间的辐射。
(3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC, 弱信号放大
器等。
抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的 抗干扰性能。
(类似于传染病的预防)
1 抑制干扰源
抑制干扰源就是尽可能的减小干扰源的/dt,di/dt。这是抗干扰设计中最优 先考虑和最重要的原则,常常会起到事半功倍的效果。 减小干扰源的/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。
抑制干扰源的常用措施如下:
(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加 续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。
(3)给电机加滤波电路,注意电容、电感引线要尽量短。
(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的 影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。
(5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。
按干扰的传播路径可分为传导干扰和辐射干扰两类。
所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和 有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大, 要特别注意处理。所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。 一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。
2 切断干扰传播路径的常用措施如下:
(1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感, 要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。
(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。
(3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。
(4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源 (如电机,继电器)与敏感元件(如单片机)远离。
(5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片 引脚排列时已考虑此要求。
(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。 大功率器件尽可能放在电路板边缘。
(7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件 如磁珠、磁环、电源滤波器,屏蔽罩,可显着提高电路的抗干扰性能。
3 提高敏感器件的抗干扰性能
提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声 的拾取,以及从不正常状态尽快恢复的方法。
提高敏感器件抗干扰性能的常用措施如下:
(1)布线时尽量减少回路环的面积,以降低感应噪声。
(2)布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦合噪声。
(3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置 端在不改变系统逻辑的情况下接地或接电源。
(4)对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813,X25043,X25045等,可大幅度提高整个电路的抗干扰性能。
(5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字 电路。
(6)IC器件尽量直接焊在电路板上,少用IC座。
我先说说我在这方面的经验:
软件方面:
1、我习惯于将不用的代码空间全清成“0”,因为这等效于NOP,可在程序跑飞时归位;
2、在跳转指令前加几个NOP,目的同1;
3、在无硬件WatchDog时可采用软件模拟WatchDog,以监测程序的运行;
4、涉及处理外部器件参数调整或设置时,为防止外部器件因受干扰而出错可定时将参数重新发送一遍,这样可使外部器件尽快恢复正确;
5、通讯中的抗干扰,可加数据校验位,可采取3取2或5取3策略;
6、在有通讯线时,如I^2C、三线制等,实际中我们发现将Data线、CLK线、INH线常态置为高,其抗干扰效果要好过置为低。
硬件方面:
1、地线、电源线的部线肯定重要了!
2、线路的去偶;
3、数、模地的分开;
4、每个数字符件在地与电源之间都要104电容;
5、在有继电器的应用场合,尤其是大电流时,防继电器触点火花对电路的干扰,可在继电器线圈间并一104和二极管,在触点和常开端间接472电容,效果不错!
6、为防I/O口的串扰,可将I/O口隔离,方法有二极管隔离、门电路隔离、光偶隔离、电磁隔离等;
7、当然多层板的抗干扰肯定好过单面板,但成本却高了几倍。
8、选择一个抗干扰能力强的器件比之任何方法都有效,我想这点应该最重要。因为器件天生的不足是很难用外部方法去弥补的,但往往抗干扰能力强的就贵些,抗干扰能力差的就便宜,正如台湾的东东便宜但性能却大打折扣一样!主要看各位的应用场合.
印制电路板(PC8)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB的密度越来越高。PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。
D. 什么是单片机在实际中有那些应用呢
单片机概述
1、何谓单片机 一台能够工作的计算机要有这样几个部份构成:CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入/输出设备(例如:串行口、并行输出口等)。在个人计算机上这些部份被分成若干块芯片,安装一个称之为主板的印刷线路板上。而在单片机中,这些部份,全部被做到一块集成电路芯片中了,所以就称为单片(单芯片)机,而且有一些单片机中除了上述部份外,还集成了其它部份如A/D,D/A等。
E. 单片机程序编写,仿真,调试常用的软件有哪些
一般用KEIL,具备这三种功能融为一体。
F. 单片机开发要注意什么
一、 如何提高C语言编程代码的效率
邓宏杰指出,用C语言进行单片机程序设计是单片机开发与应用的必然趋势。他强调:“如果使用C编程时,要达到最高的效率,最好熟悉所使用的C编译器。先试验一下每条C语言编译以后对应的汇编语言的语句行数,这样就可以很明确的知道效率。在今后编程的时候,使用编译效率最高的语句。”
他指出,各家的C编译器都会有一定的差异,故编译效率也会有所不同,优秀的嵌入式系统C编译器代码长度和执行时间仅比以汇编语言编写的同样功能程度长5-20%。他说:“对于复杂而开发时间紧的项目时,可以采用C语言,但前提是要求你对该MCU系统的C语言和C编译器非常熟悉,特别要注意该C编译系统所能支持的数据类型和算法。虽然C语言是最普遍的一种高级语言,但由于不同的MCU厂家其C语言编译系统是有所差别的,特别是在一些特殊功能模块的操作上。所以如果对这些特性不了解,那么调试起来问题就会很多,反而导致执行效率低于汇编语言。”
二、 如何减少程序中的bug?
对于如何减少程序的bug,邓宏杰给出了一些建议,他指出系统运行中应考虑的超范围管理参数有:
1.物理参数。这些参数主要是系统的输入参数,它包括激励参数、采集处理中的运行参数和处理结束的结果参数。合理设定这些边界,将超出边界的参数都视为非正常激励或非正常回应进行出错处理。
2.资源参数。这些参数主要是系统中的电路、器件、功能单元的资源,如记忆体容量、存储单元长度、堆叠深度。在程式设计中,对资源参数不允许超范围使用。
3.应用参数。这些应用参数常表现为一些单片机、功能单元的应用条件。如E2PROM的擦写次数与资料存储时间等应用参数界限。
4.过程参数。指系统运行中的有序变化的参数。
三、如何解决单片机的抗干扰性问题
邓宏杰指出:防止干扰最有效的方法是去除干扰源、隔断干扰路径,但往往很难做到,所以只能看单片机抗干扰能力够不够强了。单片机干扰最常见的现象就是复位;至于程序跑飞,其实也可以用软件陷阱和看门狗将程序拉回到复位状态;所以单片机软件抗干 扰最重要的是处理好复位状态.一般单片机都会有一些标志寄存器,可以用来判断复位原因;另外你也可以自己在RAM中埋一些标志。在每次程序复位时,通过判断这些标志,可以判断出不同的复位原因;还可以根据不同的标志直接跳到相应的程序。这样可以使程序运行有连续性,用户在使用时也不会察觉到程序被重新复位过。
四、 如何测试单片机系统的可靠性
有读者希望了解用用什么方法来测试单片机系统的可靠性,邓宏杰指出:“当一个单片机系统设计完成,对于不同的单片机系统产品会有不同的测试项目和方法,但是有一些是必须测试的:
1.测试单片机软件功能的完善性。这是针对所有单片机系统功能的测试,测试软件是否写的正确完整。
2.上电、掉电测试。在使用中用户必然会遇到上电和掉电的情况,可以进行多次开关电源,测试单片机系统的可靠性。
3.老化测试。测试长时间工作情况下,单片机系统的可靠性。必要的话可以放置在高温,高压以及强电磁干扰的环境下测试。
4、ESD和EFT等测试。可以使用各种干扰模拟器来测试单片机系统的可靠性。例如使用静电模拟器测试单片机系统的抗静电ESD能力;使用突波杂讯模拟器进行快速脉冲抗干扰EFT测试等等。
邓宏杰强调:“还可以模拟人为使用中,可能发生的破坏情况。例如用人体或者衣服织物故意摩擦单片机系统的接触端口,由此测试抗静电的能力。用大功率电钻靠近单片机系统工作,由此测试抗电磁干扰能力等。”