导航:首页 > 操作系统 > pid单片机控制电机转速

pid单片机控制电机转速

发布时间:2023-09-22 17:23:05

单片机控制直流电动机

看你要求的是什么样的控制:是开环控制还是闭环控制?是控制其转速?还是扭矩?还是其他参数?

如果是开环控制,最简单,可以用PWM(即脉宽调制)来改变送给电动机的平均电压,达到调节的目的。如附图示意。

如果是闭环控制,则需要加传感器。例如要闭环控制转速,则需要加装一个转速传感器,将传感器信号送给单片机。单片机通过一定的软件算法测出转速,将实测转速和要求的转速比较,采用某种控制算法(例如PID控制)来确定输出的PWM占空比应该如何改变。

⑵ 51单片机实现电动机的PID恒速控制。

这是倒立摆系统的PID控制函数的一部分,你看看有没有思路
/****************************************************************/
//定义结构体
/****************************************************************/
struct may_PID{
signed long Proportion; //比例 ;调节系数
signed long Integral; //积分 ;调节系数
signed long Derivative; //微分 ;调节系数
signed long SetPoint; //设定值 ;定值
signed long SumError; //偏差积分
signed long PrevError; //之前偏差值
}PID/*此处可放结构体变量名*/;
struct may_PID *pp; //定义结构体类型指针
//pp=malloc(sizeof(struct may_PID)); //为指针变量分配安全的地址空间;sizeof:其为计算字节长度函数

/*****************************************************************/
/**************************PTD函数**************************************/
signed long PIDCalc(signed long NextPoint/*当前值*/ )
{
signed long dError;
Error = pp->SetPoint - NextPoint;//当前偏差
pp->SumError+=Error; //积分
dError=Error-pp->PrevError;//当前微分=当前偏差-之前偏差
pp->PrevError=Error; //把当前偏差赋予之前偏差变量,使其充当下次取样的之前偏差

return (long)(pp->Proportion *Error //比例项
+pp->Integral*pp->SumError //积分项
+pp->Derivative*dError); //微分项
}
/*****************************************************************************/

⑶ 单片机pid算法控制步进电机的电路图和程序

//P1.1(T0):Count They Distance
//P0.4:Tx
//P0.5:Rx
#include <C8051F310.h> //SFR declarations
#include <stdio.h> //Standard I/O definition file
#include <math.h> //Math library file
#include <Intrins.h>
#include <absacc.h>

unsigned int j,i;
char a=0;
unsigned int t=0;

//sbit led=P0^2;
//P0.0(PWM0):给定左轮速度.
sbit vls=P0^4; //P0.4(GPIO):给定左轮方向.
sbit vlf=P0^6; //P0.6(T0) :反馈左轮速度.
sbit dlf=P1^0; //P1.0(GPIO):反馈左轮方向.

//P0.2(PWM0):给定右轮速度.
sbit vrs=P0^5; //P0.5(GPIO):给定右轮方向.
sbit vrf=P0^7; //P0.7(T0) :反馈右轮速度.
sbit drf=P1^1; //P1.1(GPIO):反馈右轮方向.

int ol; //左轮给定值
int len;
int len_1,len_2;
int lyn_1,lyn_2;
int vl1,vl2; //反馈左轮速度值(取样周期内的方波数)
int lfz; //运算后赋给PWM的值

int lyn,lynn;
int lun=0,lun_1=0; //偏差校正值 即校正PWM输出
int lunp,luni,lund; //PID 校正值

int or; //右轮给定值
int ren;
int ren_1,ren_2;
int ryn_1,ryn_2;
int vr1,vr2; //反馈右轮速度值(取样周期内的方波数)
int rfz; //运算后赋给PWM的值

int ryn,rynn;
int run=0,run_1=0; //偏差校正值 即校正PWM输出
int runp,runi,rund; //PID 校正值

float kp=2.0; //比例系数1.8
float kd=0.2; //微分系数0.4
float lki; //积分系数

void pio_init(void);
void sys_init(void);
void t01_init(void);
void TIME3_INT(void);
void PID(void);
void interrupt_init(void);
void delay(unsigned int x);
void pwm1_1(void);

void main(void)
{
PCA0MD &= ~0x40; //关闭
pio_init(); //P11为测距输入端
sys_init();
t01_init();
pwm1_1();
TIME3_INT();
interrupt_init();

vls=1;vrs=0;
while(1)
{

ol=50;
or=50;
delay(1000);

ol=100;
or=100;
delay(1000);

ol=-50;
or=50;
delay(1000);

}

}

void PID(void)
{
/****************左轮PID调节******************/
if(dlf==1)
{
lyn=(vl2*256+vl1); //dlf是左轮反馈方向,0表示向前 vl=TL0
}
else
{
lyn=-(vl2*256+vl1); //dlf=1表示是向后退,速度应该为负值
}

len=ol-lyn; //误差=给定速度-反馈速度(取样周期内的方波数)

if(abs(len)<8)//30
{
lki=1.4; //ki值的确定1.4
}
else
{
lki=0.05; //积分系数:如果 | 给定值-反馈值 | 太大
} //则就可以不引入积分,或者引入的很小0.05

lunp=kp*(len-len_1); //比例校正
luni=lki*len; //积分校正
lund=kd*(len-2*len_1+len_2); //微分校正

lun=lunp+luni+lund+lun_1; //总校正

/*************新旧数据更新*************************/
len_2=len_1;
len_1=len; //len:当前取样周期内出现的速度偏差;len_1:上次取样周期内出现的速度偏差
lun_1=lun; //lun:当前取样周期内得出的PWM校正值;lun_1:上次取样周期内得出的PWM校正值
/*************新旧数据更新*************************/

if(lun>255)
{
lun=255; //正速度
}
if(lun<-255)
{
lun=-255; //负速度
}
if(lun<0)

{
vls=1;
PCA0CPH0=-lun;
}

if(lun>=0)
{
vls=0;
PCA0CPH0=lun;
}

/****************右轮PID调节******************/
if(drf==0)
{
ryn=(vr2*256+vr1); //drf是右轮反馈方向,0表示向前 vl=TL0
}
else
{
ryn=-(vr2*256+vr1); //dlf=1表示是向后退,速度应该为负值
}

ren=or-ryn; //误差=给定速度-反馈速度(取样周期内的方波数)

if(abs(ren)<8)//30
{
lki=1.4; //ki值的确定1.4
}
else
{
lki=0.05; //积分系数:如果 | 给定值-反馈值 | 太大
} //则就可以不引入积分,或者引入的很小0.05

runp=kp*(ren-ren_1); //比例校正
runi=lki*ren; //积分校正
rund=kd*(ren-2*ren_1+ren_2); //微分校正

run=runp+runi+rund+run_1; //总校正

/*************新旧数据更新*************************/
ren_2=ren_1;
ren_1=ren; //len:当前取样周期内出现的速度偏差;len_1:上次取样周期内出现的速度偏差
run_1=run; //lun:当前取样周期内得出的PWM校正值;lun_1:上次取样周期内得出的PWM校正值
/*************新旧数据更新*************************/

if(run>255)
{
run=255; //正速度
}
if(run<-255)
{
run=-255; //负速度
}
if(run<0)

{
vrs=1;
PCA0CPH1=-run;
}

if(run>=0)
{
vrs=0;
PCA0CPH1=run;
}
//因为这里的PCA0CPH0越大,对应的电机速度越小,所以要255来减一下
}

void pio_init(void)
{
XBR0=0x00; //0000 0001
XBR1=0x72; //0111 0010 时能弱上拉 T0T1连接到脚口P06、P07 CEX0、CEX1连接到脚口P00、P01

P0MDIN=0xff; //模拟(0);数字(1) 1111 0011
P0MDOUT=0xc3;//开漏(0);推挽(1) 1111 1111
P0SKIP=0x3c; //0011 1100

P1MDIN=0xff; //1111 1111
P1MDOUT=0xfc;//
P1SKIP=0x00; //1111 1111

}

void sys_init(void) //12MHz
{
OSCICL=0x43;
OSCICN=0xc2;
CLKSEL=0x00;

}

void pwm1_1(void) //PWM的初始化
{
PCA0MD=0x08; //PCA时钟为12分频

PCA0CPL0=200; //左轮
PCA0CPM0=0x42; //设置左轮为8位PWM输出
PCA0CPH0=200;

PCA0CPL1=200; //平衡校正
PCA0CPM1=0x42; //设置为8位PWM输出
PCA0CPH1=200;

PCA0CN=0x40; //允许PCA工作
}

void t01_init(void)
{
TCON=0x50; //计数器1、2允许
TMOD=0x55; //定时器1、2采用16位计数功能
CKCON=0x00;

TH1=0x00; //用于采集左轮的速度
TL1=0x00;

TH0=0x00; //用于采集右轮的速度
TL0=0x00;
}

void TIME3_INT(void)
{
TMR3CN = 0x00; //定时器3为16位自动重载
CKCON &= ~0x40;

TMR3RLL = 0xff;
TMR3RLH = 0xd7;
TMR3L = 0xff;
TMR3H = 0xd7;

TMR3CN |= 0x04;
}

void T3_ISR() interrupt 14 //定时器3中断服务程序
{
//led=~led;
EA=0;
TCON &=~0x50; //关闭计数器0、1

vl1=TL0; //取左轮速度值
vl2=TH0;

vr1=TL1; //取右轮速度值
vr2=TH1;

TH1=0x00;
TL1=0x00;

TH0=0x00;
TL0=0x00;

PID(); //PID处理

TMR3CN &=~0x80; //清中断标志位
TCON |=0x50; //重新开计数器0、1
EA=1;
}
void interrupt_init(void)
{ IE=0x80;
IP=0x00;
EIE1|=0x80;
EIP1|=0x80;

}

void delay(unsigned int m) //延时程序
{
for(i=0;i<2000;i++)
{
for(j=0;j<m;j++){_nop_(); _nop_();}
}
}

⑷ 单片机如何控制电机转速

利用单片机的定时器TIMER_A(TA)中断产生脉冲信号,通过在响应的中断程序中实现步进电机步数和圈数的准确计数,通过PWM实现转速控制。

可以利用P10端口的中断关闭TA中断程序,并推入堆栈,停止电机;P11中断则开启TA中断,堆栈推入程序计器(PC),开启电机。

P31端口输出高电平由PMM8713的U/D端口控制电机的转向;P3.0~P37端口接8279的8个数据接口。

单片机扫描到矩阵键盘有键按下时,利用P2端口的中断设置TA,控制启停、调速和转向等,同时单片机反馈给8279控制LED管显示转速和转向。

(4)pid单片机控制电机转速扩展阅读

1、单片机所接收到控制命令暂存在RXBUFFER中,与存储在片内Flash的中断程序的入口地址相比较,相同就进入中断,实现步进电机的控制。

2、当P1.0中为高电平时,其内部三极管导通,使电机转动。当P1.0为低电平时,内部三极管截止,电路断开,电机停止转动。所以在程序中可以利用P1.0口输出PWM波来控制电机的转速。

⑸ 基于单片机AT89c51的数字PID控制直流电机PWM调速系统C语言程序

首先弄清楚PID是一种控制算法!!!
1,“如果用单片机恒温可以使温度到达预定值就停止加热,低了就加热,用一个温度传感器反馈,这样算是一个自动控制吗”你这是控制系统,但是效果会非常差,尤其是对于温度控制这种大惯性系统,达到预定值就停止加热,但是由于惯性,温度肯定会继续上升,电炉烧水的时候,水开了,断电之后水还要沸腾一定时间的(沸腾是很消耗能量的,由此可见如果是加热的话温度上升更严重,你也可以自己用温度计试试看);“低了就加热”是同样的道理。如果系统对控制精度有要求,你这样做肯定达不到要求。PID是一种控制算法,相对于其他控制算法来说算是最简单的了。PID能够做到在温度快要达到设定值的时候降低加热功率,让温度上升速度变慢,最终稳定在设定值。如果用你的直接控制,温度会在设定值上下振荡,永远不会停在设定值。
2,一般的控制系统都需要加反馈,以构成闭环控制系统,相对的还有开环控制系统。开环控制系统,举个例子,就是你加热的时候事先计算好大约需要多少热量,然后考虑一下环境影响,计算出加热时间,然后控制加热系统按照你这个时间加热。你觉得这样的系统能够稳定工作吗?环境稍稍有变动就挂了!开环控制系统的特点就是很容易受到环境的影响;闭环控制系统就稳定很多,你用1L水可用,2L水也行,500W电能用,1000W电炉也能用,这就是闭环的优点。
因此,大多数的控制系统都是闭环的,开环很少单独使用,即使用到了也是有闭环的。开环其实也是有优点的,开环在控制系统里面叫做前馈(跟反馈对应的),比如你的系统里面电源电压上升了,加热速度肯定会变快,如果你对电源电压采样,将采样的结果输入到闭环里面,对闭环做一个轻微的修正,控制的精度会更好,这就是开环的优势,它是超前的,能够预知结果(根据地源电压提高就能知道需要降低输出功率了)。
说完这些,你应该明白了,反馈是必需的(前馈也可以要,但是不是必需的),PID不能被取代(除非你用其它更复杂的控制算法)。

⑹ 如何用单片机控制直流电机

通过与单片机相连的按键控制直流电机停启的电路如下图所示,通过P3.6口按键触发启动直流电机,P3.7口的按键触发停止直流电机的运行。由图可知,当P1.0输出高电平“1”时,NPN型三极管导通,直流电机得电转动;当P1.0输出低电平“0”时,NPN型三极管截止,直流电机停止转动。

(6)pid单片机控制电机转速扩展阅读:

通过单片机产生PWM波控制直流电机程序

#include"reg52.h"


#defineucharunsignedchar


#defineuintunsignedint


ucharcodetable[10]={0x3f,0x06,0x5b,


0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//共阴数码管显示码(0-9)


sbitxiaoshudian=P0^7;


sbitwei1=P2^4;//数码管位选定义


sbitwei2=P2^5;


sbitwei3=P2^6;


sbitwei4=P2^7;


sbitbeep=P2^3;//蜂鸣器控制端


sbitmotor=P1^0;//电机控制


sbits1_jiasu=P1^4;//加速按键


sbits2_jiansu=P1^5;//减速按键


sbits3_jiting=P1^6;//停止/开始按键


uintpulse_count;//INT0接收到的脉冲数


uintnum=0;//num相当于占空比调节的精度


ucharspeed[3];//四位速度值存储


floatbianhuasu;//当前速度(理论计算值)


floatreallyspeed;//实际测得的速度


floatvv_min=0.0;vv_max=250.0;


floatvi_Ref=60.0;//给定值


floatvi_PreError,vi_PreDerror;


uintpwm=100;//相当于占空比标志变量


intsample_time=0;//采样标志


floatv_kp=1.2,v_ki=0.6,v_kd=0.2;//比例,积分,微分常数


voiddelay(uintz)


{


uintx,y;


for(x=z;x>0;x--)


for(y=20;y>0;y--);


}


voidtime_init()


{


ET1=1;//允许定时器T1中断


ET0=1;//允许定时器T0中断


TMOD=0x15;//定时器0计数,模式1;定时器1定时,模式1


TH1=(65536-100)/256;//定时器1值,负责PID中断,0.1ms定时


TL1=(65536-100)%6;


TR0=1;//开定时器


TR1=1;


IP=0X08;//定时器1为高优级


EA=1;//开总中断


}


voidkeyscan()


{


floatj;


if(s1_jiasu==0)//加速


{


delay(20);


if(s1_jiasu==0)


vi_Ref+=10;


j=vi_Ref;


}


while(s1_jiasu==0);


if(s2_jiansu==0)//减速


{


delay(20);


if(s2_jiansu==0)


vi_Ref-=10;


j=vi_Ref;


}


while(s2_jiansu==0);


if(s3_jiting==0)


{


delay(20);


motor=0;


P1=0X00;


P3=0X00;


P0=0x00;


}


while(s3_jiting==0);


}


floatv_PIDCalc(floatvi_Ref,floatvi_SpeedBack)


{


registerfloaterror1,d_error,dd_error;


error1=vi_Ref-vi_SpeedBack;//偏差的计算


d_error=error1-vi_PreError;//误差的偏差


dd_error=d_error-vi_PreDerror;//误差变化率


vi_PreError=error1;//存储当前偏差


vi_PreDerror=d_error;


bianhuasu=(v_kp*d_error+v_ki*vi_PreError+v_kd*dd_error);


return(bianhuasu);


}


voidv_Display()


{


uintsu;


su=(int)(reallyspeed*10);//乘以10之后强制转化成整型


speed[3]=su/1000;//百位


speed[2]=(su00)/100;//十位


speed[1]=(su0)/10;//个位


speed[0]=su;//小数点后一位


wei1=0;//第一位打开


P0=table[speed[3]];


delay(5);


wei1=1;//第一位关闭


wei2=0;


P0=table[speed[2]];


delay(5);


wei2=1;


wei3=0;


P0=table[speed[1]];


xiaoshudian=1;


delay(5);


wei3=1;


wei4=0;


P0=table[speed[0]];


delay(5);


wei4=1;


}


voidBEEP()


{


if((reallyspeed)>=vi_Ref+5||(reallyspeed


{


beep=~beep;


delay(4);


}


}


voidmain()


{


time_init();


motor=0;


while(1)


{


v_Display();


BEEP();


}


if(s3_jiting==0)//对按键3进行扫描,增强急停效果


{


delay(20);


motor=0;


P1=0X00;


P3=0X00;


P0=0x00;


}


while(s3_jiting==0);


}


voidtimer0()interrupt1


{


}


voidtimer1()interrupt3


{


TH1=(65536-100)/256;//1ms定时


TL1=(65536-100)%6;


sample_time++;


if(sample_time==5000)//采样时间0.1ms*5000=0.5s


{


TR0=0;//关闭定时器0


sample_time=0;


pulse_count=TH0*255+TL0;//保存当前脉冲数


keyscan();//扫描按键


reallyspeed=pulse_count/(4*0.6);//计算速度


pwm=pwm+v_PIDCalc(vi_Ref,reallyspeed);


if(pwm


if(pwm>100)pwm=100;


TH0=TL0=0;


TR0=1;//开启定时器0


}


num++;


if(num==pwm)//此处的num值,就是占空比


{


motor=0;


}


if(num==100)//100相当于占空比调节的精度


{


num=0;


motor=1;


}


}



⑺ 怎样用单片机控制直流电动机

1,简单的开关控制,用单片机引脚输出高低电平,控制MOS管驱动电路。
2,正反转控制,需要两个单片机引脚,一个控制正反转,一个控制启动与否。
3,需要控制速度,(1)电压控制,(2)PWM(脉宽)控制。
4,需要控制转角,首先能够控制速度,然后增加一个编码器,单片机中加入PID控制,用以精确控制。
以上大概就是直流电机能够控制的东西。

阅读全文

与pid单片机控制电机转速相关的资料

热点内容
半圆形计算法 浏览:392
手机建立文件夹用什么软件 浏览:730
oss压缩上传 浏览:980
蓝色学校网站源码 浏览:827
androidgridview表格 浏览:604
压缩怎么eq闪 浏览:740
流密码算法openssl 浏览:262
怎么数黄豆个数python 浏览:799
混沌序列加密的结论 浏览:224
最新脱单app哪个好 浏览:638
如何用自己电脑做服务器做网页 浏览:140
服务器安全配置要考什么证书 浏览:633
ipadpro可以编程 浏览:541
外国的程序员和中国的程序员 浏览:153
抖音小店app如何联系客服 浏览:977
linux打开多个终端 浏览:501
linux中的命令 浏览:582
优化小米6相机算法 浏览:260
ak47pdf 浏览:151
人与文化pdf 浏览:642