51单片机C语言编程实例 基础知识:51单片机编程基础 单片机的外部结构: 1. DIP40双列直插; 2. P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平) 3. 电源VCC(PIN40)和地线GND(PIN20); 4. 高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位) 5. 内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍) 6. 程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序) 7. P3支持第二功能:RXD、TXD、INT0、INT1、T0、T1 单片机内部I/O部件:(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务) 1. 四个8位通用I/O端口,对应引脚P0、P1、P2和P3; 2. 两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1) 3. 一个串行通信接口;(SCON,SBUF) 4. 一个中断控制器;(IE,IP) 针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。 C语言编程基础: 1. 十六进制表示字节0x5a:二进制为01011010B;0x6E为01101110。 2. 如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。 3. ++var表示对变量var先增一;var—表示对变量后减一。 4. x |= 0x0f;表示为 x = x | 0x0f; 5. TMOD = ( TMOD & 0xf0 ) | 0x05;表示给变量TMOD的低四位赋值0x5,而不改变TMOD的高四位。 6. While( 1 ); 表示无限执行该语句,即死循环。语句后的分号表示空循环体,也就是{;} 在某引脚输出高电平的编程方法:(比如P1.3(PIN4)引脚) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P1.3 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P1_3 = 1; //给P1_3赋值1,引脚P1.3就能输出高电平VCC 5. While( 1 ); //死循环,相当 LOOP: goto LOOP; 6. } 注意:P0的每个引脚要输出高电平时,必须外接上拉电阻(如4K7)至VCC电源。 在某引脚输出低电平的编程方法:(比如P2.7引脚) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P2.7 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P2_7 = 0; //给P2_7赋值0,引脚P2.7就能输出低电平GND 5. While( 1 ); //死循环,相当 LOOP: goto LOOP; 6. } 在某引脚输出方波编程方法:(比如P3.1引脚) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P3.1 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 5. { 6. P3_1 = 1; //给P3_1赋值1,引脚P3.1就能输出高电平VCC 7. P3_1 = 0; //给P3_1赋值0,引脚P3.1就能输出低电平GND 8. } //由于一直为真,所以不断输出高、低、高、低……,从而形成方波 9. } 将某引脚的输入电平取反后,从另一个引脚输出:( 比如 P0.4 = NOT( P1.1) ) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P0.4和P1.1 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P1_1 = 1; //初始化。P1.1作为输入,必须输出高电平 5. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 6. { 7. if( P1_1 == 1 ) //读取P1.1,就是认为P1.1为输入,如果P1.1输入高电平VCC 8. { P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND 2 51单片机C语言编程实例 9. else //否则P1.1输入为低电平GND 10. //{ P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND 11. { P0_4 = 1; } //给P0_4赋值1,引脚P0.4就能输出高电平VCC 12. } //由于一直为真,所以不断根据P1.1的输入情况,改变P0.4的输出电平 13. } 将某端口8个引脚输入电平,低四位取反后,从另一个端口8个引脚输出:( 比如 P2 = NOT( P3 ) ) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P2和P3 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P3 = 0xff; //初始化。P3作为输入,必须输出高电平,同时给P3口的8个引脚输出高电平 5. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 6. { //取反的方法是异或1,而不取反的方法则是异或0 7. P2 = P3^0x0f //读取P3,就是认为P3为输入,低四位异或者1,即取反,然后输出 8. } //由于一直为真,所以不断将P3取反输出到P2 9. } 注意:一个字节的8位D7、D6至D0,分别输出到P3.7、P3.6至P3.0,比如P3=0x0f,则P3.7、P3.6、P3.5、P3.4四个引脚都输出低电平,而P3.3、P3.2、P3.1、P3.0四个引脚都输出高电平。同样,输入一个端口P2,即是将P2.7、P2.6至P2.0,读入到一个字节的8位D7、D6至D0。 第一节:单数码管按键显示 单片机最小系统的硬件原理接线图: 1. 接电源:VCC(PIN40)、GND(PIN20)。加接退耦电容0.1uF 2. 接晶体:X1(PIN18)、X2(PIN19)。注意标出晶体频率(选用12MHz),还有辅助电容30pF 3. 接复位:RES(PIN9)。接上电复位电路,以及手动复位电路,分析复位工作原理 4. 接配置:EA(PIN31)。说明原因。 发光二极的控制:单片机I/O输出 将一发光二极管LED的正极(阳极)接P1.1,LED的负极(阴极)接地GND。只要P1.1输出高电平VCC,LED就正向导通(导通时LED上的压降大于1V),有电流流过LED,至发LED发亮。实际上由于P1.1高电平输出电阻为10K,起到输出限流的作用,所以流过LED的电流小于(5V-1V)/10K = 0.4mA。只要P1.1输出低电平GND,实际小于0.3V,LED就不能导通,结果LED不亮。 开关双键的输入:输入先输出高 一个按键KEY_ON接在P1.6与GND之间,另一个按键KEY_OFF接P1.7与GND之间,按KEY_ON后LED亮,按KEY_OFF后LED灭。同时按下LED半亮,LED保持后松开键的状态,即ON亮OFF灭。 代码 1. #include <at89x52.h> 2. #define LED P1^1 //用符号LED代替P1_1 3. #define KEY_ON P1^6 //用符号KEY_ON代替P1_6 4. #define KEY_OFF P1^7 //用符号KEY_OFF代替P1_7 5. void main( void ) //单片机复位后的执行入口,void表示空,无输入参数,无返回值 6. { 7. KEY_ON = 1; //作为输入,首先输出高,接下KEY_ON,P1.6则接地为0,否则输入为1 8. KEY_OFF = 1; //作为输入,首先输出高,接下KEY_OFF,P1.7则接地为0,否则输入为1 9. While( 1 ) //永远为真,所以永远循环执行如下括号内所有语句 10. { 11. if( KEY_ON==0 ) LED=1; //是KEY_ON接下,所示P1.1输出高,LED亮 12. if( KEY_OFF==0 ) LED=0; //是KEY_OFF接下,所示P1.1输出低,LED灭 13. } //松开键后,都不给LED赋值,所以LED保持最后按键状态。 14. //同时按下时,LED不断亮灭,各占一半时间,交替频率很快,由于人眼惯性,看上去为半亮态 15. } 数码管的接法和驱动原理 一支七段数码管实际由8个发光二极管构成,其中7个组形构成数字8的七段笔画,所以称为七段数码管,而余下的1个发光二极管作为小数点。作为习惯,分别给8个发光二极管标上记号:a,b,c,d,e,f,g,h。对应8的顶上一画,按顺时针方向排,中间一画为g,小数点为h。 我们通常又将各二极与一个字节的8位对应,a(D0),b(D1),c(D2),d(D3),e(D4),f(D5),g(D6),h(D7),相应8个发光二极管正好与单片机一个端口Pn的8个引脚连接,这样单片机就可以通过引脚输出高低电平控制8个发光二极的亮与灭,从而显示各种数字和符号;对应字节,引脚接法为:a(Pn.0),b(Pn.1),c(Pn.2),d(Pn.3),e(Pn.4),f(Pn.5),g(Pn.6),h(Pn.7)。 如果将8个发光二极管的负极(阴极)内接在一起,作为数码管的一个引脚,这种数码管则被称为共阴数码管,共同的引脚则称为共阴极,8个正极则为段极。否则,如果是将正极(阳极)内接在一起引出的,则称为共阳数码管,共同的引脚则称为共阳极,8个负极则为段极。 以单支共阴数码管为例,可将段极接到某端口Pn,共阴极接GND,则可编写出对应十六进制码的七段码表字节数据
② c51单片机程序实例
#include<reg51.h>
#defineucharunsignedchar
uchartab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00};//0到9
ucharnum,cnt,disn;
ucharkeyval,disk;
ucharled[]={1,2,3,4};
voiddealdat(uchara)
{
led[0]=0;
led[1]=0;
led[2]=0;
led[3]=0;
led[a]=disk;
}
voiddelay(unsignedinta)
{
unsignedinti,j;
for(i=0;i<a;i++)
for(j=0;j<1000;j++);
}
voidt0isr()interrupt1
{
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
switch(num)
{
case0:P2=0x01;break;
case1:P2=0x02;break;
case2:P2=0x04;break;
case3:P2=0x08;break;
default:break;
}
P0=~tab[led[num]];
num++;
num&=0x03;
cnt++;
if(cnt>100)
{
cnt=0;
disn++;
disn%=4;
dealdat(disn);
}
}
ucharkbscan(void)
{
unsignedcharsccode,recode;
P3=0x0f;//发0扫描,列线输入
if((P3&0x0f)!=0x0f)//有键按下
{
// delay(20);//延时去抖动
if((P3&0x0f)!=0x0f)
{
sccode=0xef;//逐行扫描初值
while((sccode&0x01)!=0)
{
P3=sccode;
if((P3&0x0f)!=0x0f)
{
recode=(P3&0x0f)|0xf0;
return((~sccode)+(~recode));
}
else
sccode=(sccode<<1)|0x01;
}
}
}
return0;//无键按下,返回0
}
voidgetkey(void)
{
unsignedcharkey;
key=kbscan();
if(key==0){keyval=0xff;return;}
switch(key)
{
case0x11:keyval=7;break;
case0x12:keyval=4;break;
case0x14:keyval=1;break;
case0x18:keyval=10;break;
case0x21:keyval=8;break;
case0x22:keyval=5;break;
case0x24:keyval=2;break;
case0x28:keyval=0;break;
case0x41:keyval=9;break;
case0x42:keyval=6;break;
case0x44:keyval=3;break;
case0x48:keyval=11;break;
case0x81:keyval=12;break;
case0x82:keyval=13;break;
case0x84:keyval=14;break;
case0x88:keyval=15;break;
default:keyval=0xff;break;
}
}
main()
{
TMOD=0x11;
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
TR0=1;
ET0=1;
EA=1;
while(1)
{
getkey();
if(keyval!=0xff)disk=keyval;
delay(10);
}
}
③ 大家帮忙找一些51单片机的基本C语言程序例子,最好带说明,谢啦
中断控制程序:
#include <AT89X52.H>
#define uchar unsigned char
#define uint unsigned int
#define port_count P2 //P2接8LED接口
//将计数器的二进制值用8个LED显示出来
uchar count;//计数器(存储中断次数)
void main(void)
{
count=0; //清零计数器
port_count=~count;//清零P2口
IT0=1; //INT0设为边沿触发方式�IT0=0则为电平触发方式
EX0=1; //开INT0中断
EA=1; //开系统中断
while(1); //等待中断处理
}
//INT0中断处理函数
void int0_interrupt() interrupt 0 //INT0中断号0
{
count++;
port_count=~count; //当达到255时,溢出,又从0开始
}
I/O控制程序:
#include <AT89X52.H>
#include <intrins.h>
#define uchar unsigned char
#define uint unsigned int
#define flowlight P2
void delay10ms()
{uchar a,b;
for(a=200;a>0;a--)
for(b=225;b>0;b--);
}
void main()
{
uchar flag=0;//判断移动方向 flag==0 左移 flag==1 右移
uchar port_state=0x01;
flowlight=~port_state;
while(1)
{
delay10ms();
if(port_state==0X80&&flag==0)
{
flag=1; //流水灯左移到第八位又移回来 ~1000 0000
}
else
if(port_state==0X01&&flag==1)
{
flag=0; //流水灯右移到第1位又移回来 ~0000 0001
}
if(flag==0)
{
port_state=port_state<<1;
flowlight=~port_state;
}
else
{
port_state=port_state>>1;
flowlight=~port_state;
}
}
串口通信程序:
主机程序:
#include <AT89X52.H>
#define NODE_ADDR 3 //目的节点地址
#define COUNT 10 //发送缓冲区buffer大小
typedef unsigned char uchar;
uchar buffer[COUNT]; //定义buffer
int pt; //设置指针
main()//////////////////////////////////////////发送程序
{
//buffer初始化
pt=0;
while(pt<COUNT)
{
buffer[pt]='1'+pt; //[buffer]=0X31,[buffer+1]= 0X32,[buffer+2] 0X33........
pt++;
}
////初始化串口和T1(波特率发生器)/////////PCON缺省为0
PCON=0X00;
SCON=0Xc0; //SCON=1100 0000B,置串口为方式3, SM2=0,REN=0,主机不接收地址帧
TMOD=0X20; //20H=0010 0000B,置T1为方式2,TR1控制T1的开关,定时器方式
TH1=253;TL1=253; //方式2为自动重装///f(bps)=9600bps (f(osc)=11.0592MHZ)
TR1=1; //启动T1
ET1=0; //关T1中断 由于自动重装
ES=1; //开串口中断
EA=1; //开系统中断
pt=0;
///////////////发送地址帧
TB8=1; //地址帧标志
SBUF=NODE_ADDR; //发送目的节点地址
while(pt<COUNT); //等待发送完全部数据
while(1);//不执行任何操作
} //end main
/////发送完中断函数
void send()interrupt 4
{
TI=0; //清发送中断标志
if(pt<COUNT)
{
//发送一帧数据
TB8=0;//数据帧标志
SBUF=buffer[pt]; //启动发送
pt++;//指针指向下一单元
}
else
{
ES=0; //关串口中断
EA=0; //关系统中断
return; //若发送完则停止发送并返回
}
}
接收程序:
#include<reg52.h>
#define uchar unsigned char
#define NODE_ADDR 3 //本机节点地址
#define COUNT 10 //定义接收缓冲区buffer大小
uchar buffer[COUNT]; //定义buffer
int pt; //当前位置指针
void send_char_com(unsigned char ch); //向串口发送一个字符的函数声明
void delay(void);
main() ////////////////串行异步从机接收程序
{
PCON=0X00; //初始化串口和T1(波特率发生器)/////////PCON缺省为0
SCON=0XF0; //SCON=1111 0000B,方式3,SM2=1,REN=1,允许接收地址帧
TMOD=0X20; //20H=0010 0000B,置T1为方式2,TR1控制T1的开关,定时器方式
TH1=253;TL1=253; //方式2为自动重装///f(bps)=9600bps (f(osc)=11.0592MHZ)
TR1=1; //启动T1
ET1=0; //关T1中断 由于自动重装
ES=1; //开串口中断
EA=1; //开系统中断
pt=0;
while(pt<COUNT); //等待接收地址帧和全部数据帧
delay() ;
//接收完后返回数据
SCON=0XC0; //SCON=1100 0000B,置串口为方式3, SM2=0,REN=0,主机不接收地址帧
EA=0;
for(pt=0;pt<COUNT;pt++)
{
send_char_com(buffer[pt]);
}
while(1);
} //end main
///////////串口接收中断函数
void receive()interrupt 4 using 3
{
RI=0; //清除接收中断标志
if(RB8==1) //地址帧
{//若为本机地址,则置SM2=0,以便接收数据
if(SBUF==NODE_ADDR)
{
SM2=0;
}
}
/////RB8=0,数据帧
else if(RB8==0)
{buffer[pt]=SBUF; //数据帧送buffer
pt++;
if(pt>=COUNT)
SM2=1; //若接收完全部数据帧,则通信结束;置SM2=1,准备下一次通信
}
}
//向串口发送一个字符
void send_char_com(unsigned char ch)
{
SBUF=ch;
while(TI==0);
TI=0;
}
///////////////////////////////////////////////////////////////////////////////////
void delay(void)
{uchar i=100;
while(i--);
}
④ 51单片机怎样从一个非常大的数字里面提取个十百千万位等......
下面举例说明万千百十个的表示方法。其实很简单,用除法取余就行。
i=a/b ;//取商
i=a%b;//取余
方法很多,以下是一例:
unsigned int wan,qian,,shi ,ge,
wan=i/10000;//除一万取商,是万位。
qian=(i/1000)%10;//先除1000,取商,商的个位是千位,所以再除10 取余。
=(i%100)/10%10;//先除100,取商,商的个位是百位,所以再除10 取余。
shi=(i%100)/10;//先除100,取余,商再除10 取余。
ge==(i%10;//除10取余。
不过阁下要知道整形量最大是65535,假如你的数据达到999999,你就要定义长整形量了。
unsigned long int i=999999;
如当I<10的时候 P0=table[i/10]; 个位
这样的算法 我写的不行 ,请高手写下 ,我看下我的出错在什么地方
i/10是取商啊,怎么可能是个位呢?是十位。I<10的话,一定是0了。
移位的方法不行,移位是2进制运算。你这个是十进制。
⑤ 51单片机,定时器方式1的1s定时,怎么编程
本粗族键程序来自《单片机C语言程序穗猜设计实训100例——基于8051+Proteus仿真》没用中断。
#include <reg52.h>
#include <intrins.h>
#define uchar unsigned char
#define uint unsigned int
void main()
{
uchar T_Count = 0;
P0 = 0xfe;
P2 = 0xfe;
TMOD = 0x10;//定时器1方式1
TH1 = (65535-50000)/256;//定时50000us=50ms
TL1 = (65535-50000)%256;
TR1 = 1;//启动岩巧定时器1
while(1)
{
if(TF1== 1)//查询方式定时时间到后TF1=1
{
TF1 = 0;
TH1 = (65535-50000)/256;
TL1 = (65535-50000)%256;
if(++T_Count == 20)//50ms*20=1000ms
{
P0 = _crol_(P0,1);
P2 = _crol_(P2,1);
T_Count = 0;
}
}
}
}
⑥ 很简的51单片机C语言流水灯程序
1、51单片机C语言实现循环8个流水灯左移三次,后右移三次。
例程:
#include<reg51.h> //51单片机头文件
#include <intrins.h> //包含有左右循环移位子函数的库
#define uint unsigned int //宏定义
#define uchar unsigned char //宏定义
sbit beep=P2^3;
void delay(uint z) //延时函数,z的取值为这个函数的延时ms数,如delay(200);大约延时200ms.
{ //delay(500);大约延时500ms.
uint x,y;
for(x=z;x>0;x--)
for(y=110;y>0;y--);
}
void main() //主函数
{
uchar a,i,j;
while(1) //大循环
{
a=0xfe; //赋初值
for(j=0;j<3;j++) for(i=0;i<8;i++) //左移三次
{
P1=a; //点亮小灯
beep=0; //开启蜂鸣器
delay(50); //延时50毫秒
beep=1; //关闭蜂鸣器
delay(50); //再延时50毫秒
a=_crol_(a,1); //将a变量循环左移一位
}
a=0x7f;
for(j=0;j<3;j++) for(i=0;i<8;i++) //右移三次
{
P1=a; //点亮小灯
beep=0; //开启蜂鸣器
delay(50); //延时50毫秒
beep=1; //关闭蜂鸣器
delay(50); //再延时50毫秒
a=_cror_(a,1); //将a变量循环右移一位
}
}
}
2、51单片机是对所有兼容Intel
8031指令系统的单片机的统称。该系列单片机的始祖是Intel的8031单片机,后来随着Flash
rom技术的发展,8031单片机取得了长足的进展,成为应用最广泛的8位单片机之一,其代表型号是ATMEL公司的AT89系列,它广泛应用于工业测控系统之中。很多公司都有51系列的兼容机型推出,今后很长的一段时间内将占有大量市场。51单片机是基础入门的一个单片机,还是应用最广泛的一种。
⑦ 《单片机C语言程序设计实训100例——基于8051+Proteus仿真》 第03篇源代码
单片机c语言编程100个实例目录1
函数的使用和熟悉
实例3:用单片机控制第一个灯亮
实例4:用单片机控制一个灯闪烁:认识单片机的工作频率
实例5:将 P1口状态分别送入P0、P2、P3口:认识I/O口的引脚功能
实例6:使用P3口流水点亮8位LED
实例7:通过对P3口地址的操作流水点亮8位LED
实例8:用不同数据类型控制灯闪烁时间
实例9:用P0口、P1 口分别显示加法和减法运算结果
实例10:用P0、P1口显示乘法运算结果
实例11:用P1、P0口显示除法运算结果
实例12:用自增运算控制P0口8位LED流水花样
实例13:用P0口显示逻辑"与"运算结果
实例14:用P0口显示条件运算结果
实例15:用P0口显示按位"异或"运算结果
实例16:用P0显示左移运算结果
实例17:"万能逻辑电路"实验
实例18:用右移运算流水点亮P1口8位LED
实例19:用if语句控制P0口8位LED的流水方向
实例20:用swtich语句的控制P0口8位LED的点亮状态
实例21:用for语句控制蜂鸣器鸣笛次数
实例22:用while语句控制LED
实例23:用do-while语句控制P0口8位LED流水点亮
实例24:用字符型数组控制P0口8位LED流水点亮
实例25: 用P0口显示字符串常量
实例26:用P0 口显示指针运算结果
实例27:用指针数组控制P0口8位LED流水点亮
实例28:用数组的指针控制P0 口8 位LED流水点亮
实例29:用P0 、P1口显示整型函数返回值
实例30:用有参函数控制P0口8位LED流水速度
实例31:用数组作函数参数控制流水花样
实例32:用指针作函数参数控制P0口8位LED流水点亮
实例33:用函数型指针控制P1口灯花样
实例34:用指针数组作为函数的参数显示多个字符串
单片机c语言编程100个实例目录2
实例35:字符函数ctype.h应用举例
实例36:内部函数intrins.h应用举例
实例37:标准函数stdlib.h应用举例
实例38:字符串函数string.h应用举例
实例39:宏定义应用举例2
实例40:宏定义应用举例2
实例41:宏定义应用举例3
* 中断、定时器中断、定时器 *中断、定时器*中断、定时器 /
实例42:用定时器T0查询方式P2口8位控制LED闪烁
实例43:用定时器T1查询方式控制单片机发出1KHz音频
实例44:将计数器T0计数的结果送P1口8位LED显示
实例45:用定时器T0的中断控制1位LED闪烁
实例46:用定时器T0的中断实现长时间定时
实例47:用定时器T1中断控制两个LED以不同周期闪烁
实例48:用计数器T1的中断控制蜂鸣器发出1KHz音频
实例49:用定时器T0的中断实现"渴望"主题曲的播放
实例50-1:输出50个矩形脉冲
实例50-2:计数器T0统计外部脉冲数
实例51-2:定时器T0的模式2测量正脉冲宽度
实例52:用定时器T0控制输出高低宽度不同的矩形波
实例53:用外中断0的中断方式进行数据采集
实例54-1:输出负脉宽为200微秒的方波
实例54-2:测量负脉冲宽度
实例55:方式0控制流水灯循环点亮
实例56-1:数据发送程序
实例56-2:数据接收程序
实例57-1:数据发送程序
实例57-2:数据接收程序
实例58:单片机向PC发送数据
实例59:单片机接收PC发出的数据
*数码管显示*数码管显示 数码管显示数码管显示*/
实例60:用LED数码显示数字5
实例61:用LED数码显示器循环显示数字0~9
实例62:用数码管慢速动态扫描显示数字"1234"
实例63:用LED数码显示器伪静态显示数字1234
实例64:用数码管显示动态检测结果
实例65:数码秒表设计
实例66:数码时钟设计
实例67:用LED数码管显示计数器T0的计数值
实例68:静态显示数字“59”
单片机c语言编程100个实例目录3
键盘控制*键盘控制* *键盘控制 *键盘控制 */
实例69:无软件消抖的独立式键盘输入实验
实例70:软件消抖的独立式键盘输入实验
实例71:CPU控制的独立式键盘扫描实验
实例72:定时器中断控制的独立式键盘扫描实验
实例73:独立式键盘控制的4级变速流水灯
实例74:独立式键盘的按键功能扩展:"以一当四"
实例75:独立式键盘调时的数码时钟实验
实例76:独立式键盘控制步进电机实验
实例77:矩阵式键盘按键值的数码管显示实验
//实例78:矩阵式键盘按键音
实例79:简易电子琴
实例80:矩阵式键盘实现的电子密码锁
液晶显示LCD*液晶显示LCD *液晶显示LCD * *液晶显示LCD*液晶显示LCD *液晶显示LCD */
实例81:用LCD显示字符'A'
实例82:用LCD循环右移显示"Welcome to China"
实例83:用LCD显示适时检测结果
实例84:液晶时钟设计
*一些芯片的使用*24c02 DS18B20 X5045 ADC0832 DAC0832 DS1302 红外遥控/
实例85:将数据"0x0f"写入AT24C02再读出送P1口显示
实例86:将按键次数写入AT24C02,再读出并用1602LCD显示
实例87:对I2C总线上挂接多个AT24C02的读写操作
实例88:基于AT24C02的多机通信 读取程序
实例89:基于AT24C02的多机通信 写入程序
实例90:DS18B20温度检测及其液晶显示
实例91:将数据"0xaa"写入X5045再读出送P1口显示
实例92:将流水灯控制码写入X5045并读出送P1口显示
实例93:对SPI总线上挂接多个X5045的读写操作
实例94:基于ADC0832的数字电压表
实例95:用DAC0832产生锯齿波电压
实例96:用P1口显示红外遥控器的按键值
实例97:用红外遥控器控制继电器
实例98:基于DS1302的日历时钟
实例99:单片机数据发送程序
实例100:电机转速表设计
模拟霍尔脉冲
http://www.dzkfw.com.cn/myxin/51c_language.chm 单片机c语言一百例子