Ⅰ 单片机实现两相异步电机的SVPWM控制
基于单片机的步进电机控制系统
摘 要:本文论述了以单片机AT89C51为控制器的步进电机的控制系统,内容主要包括该系统的硬件组成,步进电机运行过程的详细分析,PC机与AT89C51单片机之间的串行通信以及AT89C51单片机对步进电机的控制程序流程图等。关键字:单片机; 通信; 步进电动机
1 引言
平为TTL电平,为了取得一致的传输信号,因此需要采用电平转换在电气时代的今天,电动机一直在现代化的生产和生活中起芯片MAX485。根据实际需求选用AT89C51单片机,但由于其数着十分重要的作用。无论是在工农业生产还是在日常生活中的家据存储区只有256个单元,需要扩展片外数据存储器6264。此外用电器,都大量地使用着各种各样的电动机。因此对电动机的控采用脉冲分配器CH250实现单片机对步进电动机的通电换向即脉制变得越来越重要了。电动机的控制技术的发展得力于微电子技冲分配,通过光电耦合器4N25实现步进电动机与单片机的电气隔术、电力电子技术、传感器技术、永磁材料技术、自动控制技术、离,由于单片机本身的驱动能力有限,因此需要采用专门的驱动电微机应用技术的最新发展成就。正是这些技术的进步使电动机控路单电压驱动来实现功率放大,从而为电动机提供足够大的电流。制技术在近二十多年内发生了翻天覆地的变化。其中电动机的控总体的硬件方框图如图1所示:制部分已由模拟控制逐渐让位于以单片机为主的微处理器控制。本文采用硬件和软件相结合的办法实现单片机对步进电动机的运动控制。
2 硬件部分
[2]
PC机与AT89C51单片机 之间的串行通信在硬件上是由转换器ATC-106和电平转换芯片MAX485来完成的。由于PC机图1 总体的硬件框图采用的是RS-232C接口标准,根据项目要求与生产中的实际情况,需要采用传输距离较远的RS-485,因此需要采用RS-232C
3 软件部分
收稿日期:2007-05-18
通过软件实现PC机与单片机间的异步串行通信。PC机采用查询的方式发送和接收数据,单片机采用中断的方式接收PC机 T —— 步进电动机运行第 +1 步时所用的时间
N
1+N
1
1
传送的信息,从而确定步进电动机的旋转方向,走的总的脉冲数; 即匀速运行每一步所需要的时间采用软件延时法控制脉冲的分配,从而控制步进电动机的整个运 由于采用软件延时的方法来控制单片机发出脉冲的时间间行过程。 隔即通过改变脉冲的频率来改变步进电动机的运行速度。在步进电动机匀加速运行阶段,只需按电动机每走一步所需要的时间
3.1 步进电动机运行的分析
[4]
来调用延时子程序即可。根据步进电动机 的加减速要有严格的控制要求,那就是保证在
-VV
1-
ii
不失步和过冲的前提下,用最快的速度和最短的时间移动到指定
=a
(6)
+
TT
1-
ii
位置。本设计要求步进电动机的速度按图2所示运行。
—— 步进电动机匀加速运行阶段走第i步时的速度
V
i
—— 步进电动机匀加速运行阶段走第i步时所用的时间
T
i
由于步进电动机在匀加速运行阶段走最后一步时的速度与匀速运行时的速度V相同
V
N
1
L
L
=V= 又因为 = 将其代入
=
且
V V
V
V
N
1+N
1
1
1-i
i
T
T
i
1-i
(2-6)
TL
TL
-
1-ii
整理得到
a=
+TT
-1ii
2
2
+
+
(7)
TaT
0=LT
TaTL
( )
-
1-ii
i
1-ii
图2 步进电动机的运行过程
通过软件调用一个开平方函数就可以求得首先令i=
N
1
由图可知匀加速阶段与匀减速阶段的加速度和减速度大小等直到 、T ,这样就可以求出步进电动机匀
、
、
T
1
T
T
T
2
1-N
3-N
2-N
1
1
1
相同,方向相反,加减速的时间相同,因此只需算出加速段走的步加速运行阶段从静止开始每走一步所用的时间。电动机在升速数就可以知道减速时所走的步数,二者是一样的。计算过程如下:过程中所走的总的步数即脉冲数为 ,从静止开始步进电动机
N
1
首先,恒速运行时的速度V是由用户设置的,因此是一个已在匀加速阶段每走一步,升速阶段的总步数就减1,通过软件延时知量。加速度a,一个脉冲走过的距离L,整个运行过程所走的步的方法来控制走每一步所用的时间,加速阶段的延时时间是逐渐数即总的脉冲数P也都是给定值。运行方向是根据用户的要求,这样进行下
、
直到 、 、
变短的,依次为 、
T
T
T
T
T
T
1
3-N
2
2-N
1
N
1-N
1
1
1
由软件确定的。去,直到 =0,加速过程结束,进入恒速运行阶段。步进电动机
N
1
接着计算步进电动机运行时间
N
在恒速过程中走的总步数为 ,从恒速运行开始,电动机每走一
3
—— 为步进电动机匀加速运行时所用
根据
tatV =1 1
步,恒速总步数就减1,因为恒速运行时走每一步用的时间都是相的时间同的,因此软件延时的时间均为 ,直到恒速总步数减为0,恒
T
V
1+N
1
可以求出t =
(1)
1
a
速过程结束,进入减速运行阶段。由于匀减速运行的过程是加速由于匀加速阶段与匀减速阶段的加速度大小相同,因此匀过程的逆过程,在匀加速运行阶段,步进电动机走的总的步数为
t
加速运行阶段所用的时间t 与匀减速运行时所用的时间 是相
2
1
,且 =N ,减速阶段电动机每走一步,减速总步数就减1,
N
N
1
1
2
2
2
at
。因为是匀加速运行,所以S=同的,即t =
,由a和t
t
1
1
1
2
2
软件延时的时间是逐渐变常的,依次为 、
、 、 直
T
T
T T
N
1-N
2-N 3-N
1
1
1 1
求出步进电动机匀加速运行阶段走过的总的距离,通过
2
到 、 ,减速总步数减为0,减速过程结束,电动机停止运行。
T
S
T
at
21
2
1
1
N
=
(2)
=
1
L
L 3.2 通信软件的设计
可以求出匀加速运行阶段步进电动机走的总步数即脉冲
[5]
PC机与AT89C51的串行通信程序 由两部分组成:一部分数。由于步进电动机匀减速运行阶段是匀加速运行阶段的逆过是PC机的通信程序,另一部分是AT89C51的通信程序。PC机程,因此匀减速运行阶段所走的步数与匀加速运行阶段所走
N
2
发送时,AT89C51单片机一定接收;PC机接收时,AT89C51单片的步数 是相同的,即 = ,由P、 和 可以求出步进电
N N N
N N
1
1
2
1 2
机肯定发送。而且对应发送和接收的字符要相同,否则不能达到动机匀速运行阶段走的总步数即脉冲数为 ,即
N
3
正常通信的目的。此次设计PC机采用8086/8088汇编语言编
N=P- - =P-2
(3)
N
N
N 1
3 1
2
写,AT89C51单片机端采用MCS-51语言编写。为了保证数据步进电动机匀速运行时走每一步即每一个脉冲所需要的时通信的可靠性,制定通信协议如下:间是相同的,根据
① PC机与AT89C51单片机都可以发送和接收
L
(4)
V=
② PC机与AT89C51单片机的通信波特率为9600bps,采
T
1+N
1
L
(5)
因此
T
=
用的晶振频率为24MHZ,定时器T1工作在模式2,SMOD设置
为1,TH1的预设值为0CH,TL1的预设值为00H。
③ PC机与AT89C51单片机均采用串行口方式3。
④ 帧格式为:1位起始位,8位数据位,1位偶效验位,1位停止位。
⑤ PC机发送的数据帧为:
表1 PC机发送数据帧表
帧起始标志为 02H,假设电动机的运行标号为5号,对应的ASCII码值为30H,35H两个字节表示。若命令为传送命令MOV则用0表示,其对应的ASCII码值为30H,用一个字节表示。D表示步进电动机运行的方向标志,若为0则表示电动机正转,其对应的ASCII码值为30H;若为1,则表示电动机反转,其对应的ASCII码值为31H。P表示PC机传送给单片机的总的走的脉冲数。若传送的命令为设置命令SET则用1表示,其对应的ASCII码值为31H,用一个字节表示。需要单片机设置的参数有:a, V和 L;为了便于PC机与AT89C51的通信编程,数据的长度取6个字节。传送的数据只有5个字节,剩余的1个字节均用ASCII码值30H补足,对应的为0。这样做不影响效验和。若为传送命令帧,则效验和定义为方向信号D与总的脉冲数P的十六进制之和再转换为相对应的ASCII码值。若为设置命令帧,则效验和定义为a、V与L的十六进制之和再转换为D对应的ASCII码值。帧结束标志为03H。
⑥ PC机采用查询的方式发送和接收数据,AT89C51单片机采用串行口中断的方式接收和发送数据。
3.3 控制软件的设计控制步进电动机匀加速、恒速、匀减速运行的程序流程图如图2。图2 控制步进电机的程序流程图
4 结束语
参考文献:
[1] 韩全立。单片机控制技术及应用[M]。北京:电子工业出采用本方案可以很好的实现对步进电动机的控制。目前此版社,2004方案已经成功应用于电机控制的工厂等并取得了良好的效益,并
[2] 求是科技。单片机典型模块设计实例导航[M]。北京:人正试图将其进一步完善以应用于压缩机、洗衣机等日常设备中。民邮电出版社,2004
[3] 胡汉才,单片机原理及系统设计[M]。北京:清华大学出当然,随着控制产品与控制技术的发展,步进电机的控制也会得到版社,2002进一步完善。
[4] 王晓明。电动机的单片机控制[M]。北京:北京航天航空大学出版社,2002
[5] 杨金岩,郑应强,张振仁。8051单片机数据传输接口扩展技术与应用实例[M]。北京:人民邮电出版社,2005
Ⅱ 有没有单片机控制三相异步电机的程序啊
对于交流三相电机,如果控制转速可以使用变频器,如果编程控制运转可以使用PLC,如果有兴趣使用单片机控制,也可以通过单片机编程配合各种接口电路、继电器、接触器等器件来控制电机。
Ⅲ 怎样利用51单片机发生PWM,通过调节PWM的占空比控制可控硅调节电机转速,使转速平稳
需要利用交流电的作触发信号,单片机生成延迟脉冲,不必使用pwm
注意是调节过零后的延迟时间,再出脉冲。
Ⅳ 单片机是怎样控制电机的
单片机只输出信号,经过隔离电路,再经过功率开关电路驱动电机。
控制普通的三项异步电机可以单片机输出信号经三极管后驱动一个小功率继电器,由继电器来驱动交流接触器,进而控制电机,也可以单片机信号经三极管放大后直接驱动功率继电器。 方法有很多很多。至于驱动伺服,单片机端口的信号经过光耦隔离后可以直接驱动,伺服驱动器本身需要的驱动信号都是弱电信号。
单片机注意事项
一般在单片机的数据手册(Datasheet)中都会提到该单片机需要的复位信号的要求。一般复位信号的宽度应为。复位电平的宽度和幅度都应满足芯片的要求,并且要求保持稳定。还有特别重要的一点就是复位电平应与电源上电在同一时刻发生,即芯片一上电,复位信号就已产生。
不然,由于没有经过复位,单片机中的寄存器的值为随机值,上电时就会按PC寄存器中的随机内容开始运行程序,这样很容易进行误操作或进入死机状态。
Ⅳ 单片机到底怎么精确控制三相异步交流电动机啊PWM波输出只有两个吧。而三相电动机有UVW三个相怎么控制呢
至于你说的单片机控制三相异步电机的问题,你所说的速度力度,正反转这三个用词比较外行。
控制异步电机你需要控制异步电机的转矩和转速,这猛旁样你的控制目的就能达到。因为是控制,枝隐橡所以必须是闭环,这样才能有更好的动态性能和抗扰动性能。所以需要至少三个控制环,转矩环是内环,转速环是外环,最内面是电流环,实现多环控制。
一个PWM只有两个输出,三个PWM是不是有六个输出?三相,每一项都分配一个PWM,通过对PWM信号的控制,来实现对电机的电压的控制,进而达到转速转携滚矩的控制。
具体的是单片机后面连一个逆变器,逆变器连接电机,电机的电流,转速,转矩作为反馈。
建议你先做仿真吧,这个东西很复杂,不是一下子就能直接用于实践的。
Ⅵ 单片机直流电机调速系统设计
论文题目:直流电动机调速器硬件设计
专业:自动化
本科生:刘小煜 (签名)____
指导教师:胡晓东 (签名)____
直流电动机调速器硬件设计
摘 要
直流电动机广泛应用于各种场合,为使机械设备以合理速度进行工作则需要对直流电机进行调速。该实验中搭建了基于C8051F020单片机的转速单闭环调速系统,利用PWM信号改变电动机电枢电压,并由软件完成转速单闭环PI控制,旨在实现直流电动机的平滑调速,并对PI控制原理及其参数的确定进行更深的理解。实验结果显示,控制8位PWM信号输出可平滑改变电动机电枢电压,实现电动机升速、降速及反转等功能。实验中使用霍尔元件进行电动机转速的检测、反馈。期望转速则可通过功能按键给定。当选择比例参数为0.08、积分参数为0.01时,电机转速可以在3秒左右达到稳定。由实验结果知,该单闭环调速系统可对直流电机进行调速,达到预期效果。
关键字:直流电机, C8051F020,PWM,调速,数字式
Subject: Hardware Design of Speed Regulator for DC motor
Major: Automation
Name: Xiao yu Liu (Signature)____
Instructor:Xiao dong Hu (Signature) ____
Hardware Design of Speed Regulator for DC motor
Abstract
The dc motor is a widely used machine in various occasions.The speed regulaiting systerm is used to satisfy the requirement that the speed of dc motor be controlled over a range in some applications. In this experiment,the digital Close-loop control systerm is based on C8051F020 SCM.It used PI regulator and PWM to regulate the speed of dc motor. The method of speed regulating of dc motor is discussed in this paper and, make a deep understanding about PI regulator.According to experiment ,the armature voltage can be controlled linearnized with regulating the 8 bit PWM.So the dc motor can accelerate or decelerate or reverse.In experiment, hall component is used as a detector and feed back the speed .The expecting speed can be given by key-press.With using the PI regulator,the dc motor will have a stable speed in ten seconds when choose P value as 0.8 and I value as 0.01. At last,the experiment shows that the speed regulating systerm can work as expected.
Key words: dc motor,C8051F020,PWM,speed regulating,digital
目录
第一章 绪论 1
1.1直流调速系统发展概况 1
1.2 国内外发展概况 2
1.2.1 国内发展概况 2
1.2.2 国外发展概况 3
1.2.3 总结 4
1.3 本课题研究目的及意义 4
1.4 论文主要研究内容 4
第二章 直流电动机调速器工作原理 6
2.1 直流电机调速方法及原理 6
2.2直流电机PWM(脉宽调制)调速工作原理 7
2.3 转速负反馈单闭环直流调速系统原理 11
2.3.1 单闭环直流调速系统的组成 11
2.3.2速度负反馈单闭环系统的静特性 12
2.3.3转速负反馈单闭环系统的基本特征 13
2.3.4转速负反馈单闭环系统的局限性 14
2.4 采用PI调节器的单闭环无静差调速系统 15
2.5 数字式转速负反馈单闭环系统原理 17
2.5.1原理框图 17
2.5.2 数字式PI调节器设计原理 18
第三章 直流电动机调速器硬件设计 20
3.1 系统硬件设计总体方案及框图 20
3.1.1系统硬件设计总体方案 20
3.1.2 总体框图 20
3.2 系统硬件设计 20
3.2.1 C8051F020单片机 20
3.2.1.1 单片机简介 20
3.2.1.2 使用可编程定时器/计数器阵列获得8位PWM信号 23
3.2.1.3 单片机端口配置 23
3.2.2主电路 25
3.2.3 LED显示电路 26
3.2.4 按键控制电路 27
3.2.5 转速检测、反馈电路 28
3.2.6 12V电源电路 30
3.3硬件设计总结 31
第四章 实验运行结果及讨论 32
4.1 实验条件及运行结果 32
4.1.1 开环系统运行结果 32
4.1.2 单闭环系统运行结果 32
4.2 结果分析及讨论 32
4.3 实验中遇到的问题及讨论 33
结论 34
致谢 35
参考文献 36
论文小结 38
附录1 直流电动机调速器硬件设计电路图 39
附录2 直流电动机控制系统程序清单 42
附录3 硬件实物图 57
第一章 绪论
1.1直流调速系统发展概况
在现代工业中,电动机作为电能转换的传动装置被广泛应用于机械、冶金、石油化学、国防等工业部门中,随着对生产工艺、产品质量的要求不断提高和产量的增长,越来越多的生产机械要求能实现自动调速。
在可调速传动系统中,按照传动电动机的类型来分,可分为两大类:直流调速系统和交流调速系统。交流电动机直流具有结构简单、价格低廉、维修简便、转动惯量小等优点,但主要缺点为调速较为困难。相比之下,直流电动机虽然存在结构复杂、价格较高、维修麻烦等缺点,但由于具有较大的起动转矩和良好的起、制动性能以及易于在宽范围内实现平滑调速,因此直流调速系统至今仍是自动调速系统的主要形式。
直流调速系统的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。正是这些技术的进步使直流调速系统发生翻天覆地的变化。其中电机的控制部分已经由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字与模拟的混合控制系统和纯数字控制系统,并正向全数字控制方向快速发展。电动机的驱动部分所用的功率器件亦经历了几次更新换代。目前开关速度更快、控制更容易的全控型功率器件MOSFET和IGBT成为主流。功率器件控制条件的变化和微电子技术的使用也使新型的电动机控制方法能够得到实现。脉宽调制控制方法在直流调速中获得了广泛的应用。
1964年A.Schonung和H.stemmler首先提出把PWM技术应用到电机传动中从此为电机传动的推广应用开辟了新的局面。进入70年代以来,体积小、耗电少、成本低、速度快、功能强、可靠性高的大规模集成电路微处理器已经商品化,把电机控制推上了一个崭新的阶段,以微处理器为核心的数字控制(简称微机数字控制)成为现代电气传动系统控制器的主要形式。PWM常取代数模转换器(DAC)用于功率输出控制,其中,直流电机的速度控制是最常见的应用。通常PWM配合桥式驱动电路实现直流电机调速,非常简单,且调速范围大。在直流电动机的控制中,主要使用定频调宽法。
目前,电机调速控制模块主要有以下三种:
(1)、采用电阻网络或数字电位器调整直流电机的分压,从而达到调速的目的;
(2)、采用继电器对直流电机的开或关进行控制,通过开关的切换对电机的速度进行调整;
(3)、采用由IGBT管组成的H型PWM电路。用单片机控制IGBT管使之工作在占空比可调的开关状态,精确调整电动机转速。
1.2 国内外发展概况
1.2.1 国内发展概况
我国从六十年代初试制成功第一只硅晶闸管以来,晶闸管直流调速系统开始得到迅速的发展和广泛的应用。用于中、小功率的 0.4~200KW晶闸管直流调速装置已作为标准化、系列化通用产品批量生产。
目前,全国各大专院校、科研单位和厂家都在进行数字式直流调速系统的开发,提出了许多关于直流调速系统的控制算法:
(1)、直流电动机及直流调速系统的参数辩识的方法。该方法据系统或环节的输入输出特性,应用最小二乘法,即可获得系统环节的内部参数。所获得的参数具有较高的精度,方法简便易行。
(2)、直流电动机调速系统的内模控制方法。该方法依据内模控制原理,针对双闭环直流电动机调速系统设计了一种内模控制器,取代常规的PI调节器,成功解决了转速超调问题,能使系统获得优良的动态和静态性能,而且设计方法简单,控制器容易实现。
(3)、单神经元自适应智能控制的方法。该方法针对直流传动系统的特点,提出了单神经元自适应智能控制策略。这种单神经元自适应智能控制系统不仅具有良好的静、动态性能,而且还具有令人满意的鲁棒性与自适应性。
(4)、模糊控制方法。该方法对模糊控制理论在小惯性系统上对其应用进行了尝试。经1.5kw电机实验证明,模糊控制理论可以用于直流并励电动机的限流起动和恒速运行控制,并能获得理想的控制曲线。
上诉的控制方法仅是直流电机调速系统应用和研究的一个侧面,国内外还有许多学者对此进行了不同程度的研究。
1.2.2 国外发展概况
随着各种微处理器的出现和发展,国外对直流电机的数字控制调速系统的研究也在不断发展和完善,尤其80年代在这方面的研究达到空前的繁荣。大型直流电机的调速系统一般采用晶闸管整流来实现,为了提高调速系统的性能,研究工作者对晶闸管触发脉冲的控制算法作了大量研究,提出了内模控制算法、I-P控制器取代PI调节器的方法、自适应和模糊PID算法等等。
目前,国外主要的电气公司,如瑞典ABB公司,德国西门子公司、AEG公司,日本三菱公司、东芝公司、美国GE公司等,均已开发出数字式直流调装置,有成熟的系列化、标准化、模版化的应用产品供选用。如西门子公司生产的SIMOREG-K 6RA24 系列整流装置为三相交流电源直接供电的全数字控制装置,其结构紧凑,用于直流电机电枢和励磁供电,完成调速任务。设计电流范围为15A至1200A,并可通过并联SITOR可控硅单元进行扩展。根据不同的应用场合,可选择单象限或四象限运行的装置,装置本身带有参数设定单元,不需要其它任何附加设备便可以完成参数设定。所有控制调节监控及附加功能都由微处理器来实现,可选择给定值和反馈值为数字量或模拟量。
1.2.3 总结
随着生产技术的发展,对直流电气传动在起制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面都提出了更高的要求,这就要求大量使用直流调速系统。因此人们对直流调速系统的研究将会更深一步。
1.3 本课题研究目的及意义
直流电动机是最早出现的电动机,也是最早实现调速的电动机。长期以来,直流电动机一直占据着调速控制的统治地位。由于它具有良好的线性调速特性,简单的控制性能,高效率,优异的动态特性,现在仍是大多数调速控制电动机的最优选择。因此研究直流电机的速度控制,有着非常重要的意义。
随着单片机的发展,数字化直流PWM调速系统在工业上得到了广泛的应用,控制方法也日益成熟。它对单片机的要求是:具有足够快的速度;有PWM口,用于自动产生PWM波;有捕捉功能,用于测频;有A/D转换器、用来对电动机的输出转速、输出电压和电流的模拟量进行模/数转换;有各种同步串行接口、足够的内部ROM和RAM,以减小控制系统的无力尺寸;有看门狗、电源管理功能等。因此该实验中选用Cygnal公司的单片机C8051F020。
通过设计基于C8051F020单片机的直流PWM调速系统并调试得出结论,在掌握C8051F020的同时进一步加深对直流电动机调速方法、PI控制器的理解,对运动控制的相关知识进行巩固。
1.4 论文主要研究内容
本课题的研究对象为直流电动机,对其转速进行控制。基本思想是利用C8051F020自带的PWM口,通过调整PWM的占空比,控制电机的电枢电压,进而控制转速。
系统硬件设计为:以C8051F020为核心,由转速环、显示、按键控制等电路组成。
具体内容如下:
(1)、介绍直流电动机工作原理及PWM调速方法。
(2)、完成以C8051F020为控制核心的直流电机数字控制系统硬件设计。
(3)、以该系统的特点为基础进行分析,使用PWM控制电机调速,并由实验得到合适的PI控制及相关参数。
(4)、对该数字式直流电动机调速系统的性能做出总结。
第二章 直流电动机调速器工作原理
2.1 直流电机调速方法及原理
直流电动机的转速和各参量的关系可用下式表示:
由上式可以看出,要想改变直流电机的转速,即调速,可有三种不同的方式:调节电枢供电电压U,改变电枢回路电阻R,调节励磁磁通Φ。
3种调速方式的比较表2-1所示.
表2-1 3种电动机调速方式对比
调速方式和方法 控制装置 调速范围 转速变化率 平滑性 动态性能 恒转矩或恒功 率 效率
改变电枢电阻 串电枢电阻 变阻器或接触器、电阻器 2:1 低速时大 用变阻器较好
用接触器、电阻器较差 无自动调节能力 恒转矩 低
改变电枢电压 电动机-发电机组 发电机组或电机扩大机(磁放大器) 10:1~20:1 小 好 较好 恒转矩 60%~70%
静止变流器 晶闸管变流器 50:1~100:1 小 好 好 恒转矩 80%~90%
直流脉冲调宽 晶体管或晶闸管直流开关电路 50:1~100:1 小 好 好 恒转矩 80%~90%
改变磁通 串联电阻或可变直流电源 直流电源变阻器 3:1
~
5:1 较大 差 差 恒功率 80%~90%
电机扩大机或磁放大器 好 较好
晶闸管变流器 好
由表2-1知,对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最佳,而变电枢电压调速方法亦是应用最广的调速方法。
2.2直流电机PWM(脉宽调制)调速工作原理
在直流调速系统中,开关放大器提供驱动电机所需要的电压和电流,通过改变加在电动机上的电压的平均值来控制电机的运转。在开关放大器中,常采用晶体管作为开关器件,晶体管如同开关一样,总是处在接通和断开的状态。在晶体管处在接通时,其上的压降可以略去;当晶体管处在断开时,其上的压降很大,但是电流为零,所以不论晶体管导通还是关断,输出晶体管中的功耗都是很小的。一种比较简单的开关放大器是按照一个固定的频率去接通和断开放大器,并根据需要改变一个周期内“接通”和“断开”的相位宽窄,这样的放大器被称为脉冲调制放大器。
PWM脉冲宽度调制技术就是通过对一系列脉冲的宽度进行调制,来等效地获得获得所需要波形(含形状和幅值)的技术。
根据PWM控制技术的特点,到目前为止主要有八类方法:相电压控制PWM、线电压控制PWM、电流控制PWM、非线性控制PWM,谐振软开关PWM、矢量控制PWM、直接转矩控制PWM、空间电压矢量控制PWM。
利用开关管对直流电动机进行PWM调速控制原理图及输入输出电压波形如图2-1、图2-2所示。当开关管MOSFET的栅极输入高电平时,开关管导通,直流电动机电枢绕组两端由电压。秒后,栅极输入变为低电平,开关管截止,电动机电枢两端电压为0。秒后,栅极输入重新变为高电平,开关管的动作重复前面的过程。这样,对应着输入的电平高低,直流电动机电枢绕组两端的电压波形如图2-2所示。电动机的电枢绕组两端的电压平均值为:
式2-1
式中 ——占空比,
占空比表示了在一个周期里,开关管导通的时间与周期的比值。的变化范围为0≤≤1。由式2-1可知,当电源电压不变的情况下,电枢的端电压的平均值取决于占空比的大小,改变值就可以改变端电压的平均值,从而达到调速的目的,这就是PWM调速原理。
在PWM调速时,占空比是一个重要参数。以下是三种可改变占空比的方法:
(1)、定宽调频法:保持不变,改变,从而改变周期(或频率)。
(2)、调宽调频法:保持不变,改变,从而改变周期(或频率)。
(3)、定频调宽法:保持周期(或频率)不变,同时改变、。
前2种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此应用较少。目前,在直流电动机的控制中,主要使用第3种方法。
图2-1 PWM调速控制原理
图2-2 输入输出电压波形
产生PWM控制信号的方法有4种,分别为:
(1)、分立电子元件组成的PWM信号发生器
这种方法是用分立的逻辑电子元件组成PWM信号电路。它是最早期的方式,现在已经被淘汰了。
(2)、软件模拟法
利用单片机的一个I/O引脚,通过软件对该引脚不断地输出高低电平来实现PWM信号输出。这种方法要占用CPU大量时间,需要很高的单片机性能,易于实现,目前也逐渐被淘汰。
(3)、专用PWM集成电路
从PWM控制技术出现之日起,就有芯片制造商生产专用的PWM集成电路芯片,现在市场上已有许多种。这些芯片除了由PWM信号发生功能外,还有“死区”调节功能、保护功能等。在单片机控制直流电动机系统中,使用专用PWM集成电路可以减轻单片机负担,工作也更可靠。
(4)、单片机PWM口
新一代的单片机增加了许多功能,其中包括PWM功能。单片机通过初始化设置,使其能自动地发出PWM脉冲波,只能在改变占空比时CPU才进行干预。
其中常用后两中方法获得PWM信号。实验中使用方法(4)获得PWM信号。
2.3 转速负反馈单闭环直流调速系统原理
2.3.1 单闭环直流调速系统的组成
只通过改变触发或驱动电路的控制电压来改变功率变换电路的输出平均电压,达到调节电动机转速的目的,称为开环调速系统。但开环直流调速系统具有局限性:
(1)、通过控制可调直流电源的输入信号,可以连续调节直流电动机的电枢电压,实现直流电动机的平滑无极调速,但是,在启动或大范围阶跃升速时,电枢电流可能远远超过电机额定电流,可能会损坏电动机,也会使直流可调电源因过流而烧毁。因此必须设法限制电枢动态电流的幅值。
(2)、开环系统的额定速降一般都比较大,使得开环系统的调速范围D都很小,对于大部分需要调速的生产机械都无法满足要求。因此必须采用闭环反馈控制的方法减小额定动态速降,以增大调速范围。
(3)、开环系统对于负载扰动是有静差的。必须采用闭环反馈控制消除扰动静差
为克服其缺点,提高系统的控制质量,必须采用带有负反馈的闭环系统,方框图如图2-3所示。在闭环系统中,把系统输出量通过检测装置(传感器)引向系统的输入端,与系统的输入量进行比较,从而得到反馈量与输入量之间的偏差信号。利用此偏差信号通过控制器(调节器)产生控制作用,自动纠正偏差。因此,带输出量负反馈的闭环控制系统能提高系统抗扰性,改善控制精度的性能,广泛用于各类自动调节系统中。
Ⅶ 单片机是怎么和变频器接线的,从而控制异步电动机的转速求解答
首先我想问一下 单片机程序是你自己编写的吗?
如果要用单片机控制变频器,先要了解变频器的控制电源 是否和单片机的驱动电路匹配。(必须要匹配才能控制)
我个人认为,控制技术,主要是算法的体现。
1,变频器的控制 (算法)已经固定了,你只能按照它的方式接线以及设定
2,单片机是自己编写的,所以必须参照 变频器的 规则来编写,只要按照变频器的规则控制就能很简单的驱动电机。
3,按照变频器的说明书,让单片机输出相应的控制电平就可以了。