导航:首页 > 操作系统 > 检查单片机

检查单片机

发布时间:2022-03-30 13:19:39

A. 单片机怎么检测好坏

单片机一般很少坏,坏一般都是外围电路

B. 应该怎样检测单片机是否损坏啊

如果用的是stc的芯片 买过来就有跑马灯程序.
其他好象不可以, 我用了几万个还没有遇到买来就不可以用,一般不会出现这个问题 .

C. 如何判断单片机是否正常工作

供电正常,RST能正常复位,晶振脚有正弦波,EA接5V(一般情况下),ALE脚有高频方波输出。
DS18B20就是个温度传感器,具体用法之类的,网上太多,灰一样. DS18B20原理与分析 DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1.DS18B20简介 (1)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。 (2)在使用中不需要任何外围元件。 (3)可用数据线供电,电压范围:+3.0~ +5.5 V。 (4)测温范围:-55 ~+125 ℃。固有测温分辨率为0.5 ℃。 (5)通过编程可实现9~12位的数字读数方式。 (6)用户可自设定非易失性的报警上下限值。 (7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。 (8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。DS18B20的测温原理 DS18B20的测温原理如图2所示,图中低温度系数晶振的振荡频率受温度的影响很小〔1〕,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在 -55 ℃ 所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。 另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。各种操作的时序图与DS1820相同,可参看文献〔2〕。 DS18B20工作过程及时序DS18B20内部的低温度系数振荡器是一个振荡频率随温度变化很小的振荡器,为计数器1提供一频率稳定的计数脉冲。高温度系数振荡器是一个振荡频率对温度很敏感的振荡器,为计数器2提供一个频率随温度变化的计数脉冲。初始时,温度寄存器被预置成-55℃,每当计数器1从预置数开始减计数到0时,温度寄存器中寄存的温度值就增加1℃,这个过程重复进行,直到计数器2计数到0时便停止。初始时,计数器1预置的是与-55℃相对应的一个预置值。以后计数器1每一个循环的预置数都由斜率累加器提供。为了补偿振荡器温度特性的非线性性,斜率累加器提供的预置数也随温度相应变化。计数器1的预置数也就是在给定温度处使温度寄存器寄存值增加1℃计数器所需要的计数个数。DS18B20内部的比较器以四舍五入的量化方式确定温度寄存器的最低有效位。在计数器2停止计数后,比较器将计数器1中的计数剩余值转换为温度值后与0.25℃进行比较,若低于0.25℃,温度寄存器的最低位就置0;若高于0.25℃,最低位就置1;若高于0.75℃时,温度寄存器的最低位就进位然后置0。这样,经过比较后所得的温度寄存器的值就是最终读取的温度值了,其最后位代表0.5℃,四舍五入最大量化误差为±1/2LSB,即0.25℃。温度寄存器中的温度值以9位数据格式表示,最高位为符号位,其余8位以二进制补码形式表示温度值。测温结束时,这9位数据转存到暂存存储器的前两个字节中,符号位占用第一字节,8位温度数据占据第二字节。DS18B20测量温度时使用特有的温度测量技术。DS18B20内部的低温度系数振荡器能产生稳定的频率信号;同样的,高温度系数振荡器则将被测温度转换成频率信号。当计数门打开时,DS18B20进行计数,计数门开通时间由高温度系数振荡器决定。芯片内部还有斜率累加器,可对频率的非线性度加以补偿。测量结果存入温度寄存器中。一般情况下的温度值应该为9位,但因符号位扩展成高8位,所以最后以16位补码形式读出。DS18B20工作过程一般遵循以下协议:初始化——ROM操作命令——存储器操作命令——处理数据① 初始化单总线上的所有处理均从初始化序列开始。初始化序列包括总线主机发出一复位脉冲,接着由从属器件送出存在脉冲。存在脉冲让总线控制器知道DS1820 在总线上且已准备好操作。② ROM操作命令一旦总线主机检测到从属器件的存在,它便可以发出器件ROM操作命令之一。所有ROM操作命令均为8位长。这些命令列表如下:Read ROM(读ROM)[33h]此命令允许总线主机读DS18B20的8位产品系列编码,唯一的48位序列号,以及8位的CRC。此命令只能在总线上仅有一个DS18B20的情况下可以使用。如果总线上存在多于一个的从属器件,那么当所有从片企图同时发送时将发生数据冲突的现象(漏极开路会产生线与的结果)。Match ROM( 符合ROM)[55h]此命令后继以64位的ROM数据序列,允许总线主机对多点总线上特定的DS18B20寻址。只有与64位ROM序列严格相符的DS18B20才能对后继的存贮器操作命令作出响应。所有与64位ROM序列不符的从片将等待复位脉冲。此命令在总线上有单个或多个器件的情况下均可使用。Skip ROM( 跳过ROM )[CCh]在单点总线系统中,此命令通过允许总线主机不提供64位ROM编码而访问存储器操作来节省时间。如果在总线上存在多于一个的从属器件而且在Skip ROM命令之后发出读命令,那么由于多个从片同时发送数据,会在总线上发生数据冲突(漏极开路下拉会产生线与的效果)。Search ROM( 搜索ROM)[F0h]当系统开始工作时,总线主机可能不知道单线总线上的器件个数或者不知道其64位ROM编码。搜索ROM命令允许总线控制器用排除法识别总线上的所有从机的64位编码。Alarm Search(告警搜索)[ECh]此命令的流程与搜索ROM命令相同。但是,仅在最近一次温度测量出现告警的情况下,DS18B20才对此命令作出响应。告警的条件定义为温度高于TH 或低于TL。只要DS18B20一上电,告警条件就保持在设置状态,直到另一次温度测量显示出非告警值或者改变TH或TL的设置,使得测量值再一次位于允许的范围之内。贮存在EEPROM内的触发器值用于告警。③ 存储器操作命令Write Scratchpad(写暂存存储器)[4Eh]这个命令向DS18B20的暂存器中写入数据,开始位置在地址2。接下来写入的两个字节将被存到暂存器中的地址位置2和3。可以在任何时刻发出复位命令来中止写入。Read Scratchpad(读暂存存储器)[BEh]这个命令读取暂存器的内容。读取将从字节0开始,一直进行下去,直到第9(字节8,CRC)字节读完。如果不想读完所有字节,控制器可以在任何时间发出复位命令来中止读取。Copy Scratchpad(复制暂存存储器)[48h]这条命令把暂存器的内容拷贝到DS18B20的E2存储器里,即把温度报警触发字节存入非易失性存储器里。如果总线控制器在这条命令之后跟着发出读时间隙,而DS18B20又正在忙于把暂存器拷贝到E2存储器,DS18B20就会输出一个“0”,如果拷贝结束的话,DS18B20 则输出“1”。如果使用寄生电源,总线控制器必须在这条命令发出后立即起动强上拉并最少保持10ms。Convert T(温度变换)[44h]这条命令启动一次温度转换而无需其他数据。温度转换命令被执行,而后DS18B20保持等待状态。如果总线控制器在这条命令之后跟着发出读时间隙,而DS18B20又忙于做时间转换的话,DS18B20将在总线上输出“0”,若温度转换完成,则输出“1”。如果使用寄生电源,总线控制器必须在发出这条命令后立即起动强上拉,并保持500ms。Recall E2(重新调整E2)[B8h]这条命令把贮存在E2中温度触发器的值重新调至暂存存储器。这种重新调出的操作在对DS18B20上电时也自动发生,因此只要器件一上电,暂存存储器内就有了有效的数据。在这条命令发出之后,对于所发出的第一个读数据时间片,器件会输出温度转换忙的标识:“0”=忙,“1”=准备就绪。Read Power Supply(读电源)[B4h]对于在此命令发送至DS18B20之后所发出的第一读数据的时间片,器件都会给出其电源方式的信号:“0”=寄生电源供电,“1”=外部电源供电。④ 处理数据DS18B20的高速暂存存储器由9个字节组成,其分配如图3所示。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在高速暂存存储器的第0和第1个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后。

D. 如何判断单片机是否工作

供电正常,RST能正常复位,晶振脚有正弦波,EA接5V(一般情况下),ALE脚有高频方波输出。
DS18B20就是个温度传感器,具体用法之类的,网上太多,灰一样.

E. adc0809如何用单片机检测

老大,adc0809是ad的,怎么产生方波。用555吧。做一个电压比较器,不过好像速度有点跟不上,反正以前没做过,现在好多都忘得差不多了。
做频率计,最好用avr的吧,速度比51快点。
我空间有一篇学生时做的数字电压表,就用的adc0809,希望能对你有帮助,程序我自己写的,c语言,应该能看懂。
ok,good luck。

F. 单片机上电没运行,要检查什么

单片机上电后没有运转,首先要检查什么? 首先应该确认电源电压是否正常。用电压表测量接地引脚跟电源引脚之间的电压,看是否是电源电压,例如常用的5V。 接下来就是检查复位引脚电压是否正常。分别测量按下复位按钮和放开复位按钮的电压值,看是否正确。 然后再检查晶振是否起振了,一般用示波器来看晶振引脚的波形,注意应该使用示波器探头的X10档。另一个办法是测量复位状态下的IO口电平,按住复位键不放,然后测量IO口(没接外部上拉的P0口除外)的电压,看是否是高电平,如果不是高电平,则多半是因为晶振没有起振。 另外还要注意的地方是,如果使用片内ROM的话(大部分情况下如此,现在已经很少有用外部扩ROM的了),一定要将EA引脚拉高,否则会出现程序乱跑的情况。有时用仿真器可以,而烧入片子不行,往往是因为EA引脚没拉高的缘故(当然,晶振没起振也是原因只一)。经过上面几点的检查,一般即可排除故障了。如果系统不稳定的话,有时是因为电源滤波不好导致的。在单片机的电源引脚跟地引脚之间接上一个0.1uF的电容会有所改善。遇到系统不稳定时,就可以并上电容试试(越靠近芯片越好)

G. 怎么检验单片机是否合格

至于单片机嘛,也没有什么先进的仪器,如果你是自己用的话,也没有必要,下个程序装在板上试,别的也没办法了,一般新买的不可能是坏的!

H. 怎么检测STC89C52单片机的好坏

你可以编一个各IO口高低电平变化的程序,用LED指示,一般能下载程序进去,并且运行正常的就是好的。

I. 51单片机一直显示真在检查单片机,是程序问题吗不是的话是什么问题,型号对了,波特率试了很多

检查:1.单片机最小系统供电是否正常。2.检查晶振连接是否正常,可以用万用表测量、正常情况下其他引脚都是高电平而晶振引脚约为1/2Vcc。3.检查串口连接线缆是否正常,RXD、TXD是否错接,USB转串口下载线要求交叉连接。4.spi下载软件中选择使用外部晶振,核实串口号是否匹配。5.最小系统断电状态点击下载而后上电。

J. 如何检查单片机是否损坏

电压正常只能说明芯片内部没有短路,晶振脚没有波形并不代表单片机坏了,现在的单片机都有内部RC振荡器,即使没有晶振都能工作。
最可靠的方法是,如果单片机里面有程序,上电,看程序是否在执行,能执行程序肯定是好的了;或者单片机连上下载器,看能不能正常下载程序,如果可以的话,单片机也是好的。
注:以上说的单片机是好的说的是CPU、存储器这块没有问题,至于外设(有时坏一两个外设,单片机其他部分没问题也是能用的)这块需要在CPU没问题、能够正常烧写的前提下,自己写程序测试外设了

阅读全文

与检查单片机相关的资料

热点内容
单片机烧录员 浏览:970
美国数据服务器可以部署什么业务 浏览:973
如何卸载服务器中的ie 浏览:42
单片机必须学编程吗 浏览:153
如何判断是否与服务器连接数据库 浏览:740
吃甜食会缓解压力嘛 浏览:317
pdf魔鬼 浏览:29
二维数组递归解决算法问题 浏览:382
java反射例子 浏览:670
惠普笔记本自带解压软件 浏览:840
抖音视频后台压缩 浏览:707
app里的视频广告从哪里接的 浏览:556
天翼云服务器跟腾讯云 浏览:618
cyk算法实现 浏览:191
大潘号app在哪里可以下载 浏览:109
怎么做解压豌豆捏捏乐 浏览:618
安卓手机怎么调成苹果表情 浏览:755
android蓝牙声音 浏览:850
横盘震荡选股公式源码 浏览:589
子平pdf 浏览:507