㈠ 单片机。4.在MCS-51中,以下有关PC和DPTR的结论错误的是 ( )
A是正确的,DPTR可以读和写
B是正确的,都是16位
C是错误的,DPTR不能自动加1,只能靠软件加1
D是正确的,DPTR可以拆分为DPH和DPL,PC则不能。
㈡ 找 一关于单片机的论文
智能化多路串行数据采集/传输模块的设计
广州市光机电工程研究中心 行联合
广州市方统生物科技有限公司 关 强
引言
随着电子技术的不断发展,目前对各种物理量的检测和控制都可得以实现。微机检测控制系统不仅运用到航天航空、机器人技术、纺织机械、食品加工等工业过程控制,而且已经成为日常各种家用电器当中的主要组成部分。其中,A/D(模拟数字转换)设备起着十分重要的作用。这样,一个系统中就会需要更多的A/D设备。一般是用扩展一块或多块A/D采集卡的方法去实现。当模拟量较少或是温度、压力等缓变信号场合,采用总线型A/D卡并不是最合适、最经济的方案。这里介绍一种以AT89C2051单片机为核心,采用TLC2543L 12位串行A/D转换器构成的采样模块,该模块的采样数据由单片机串口经电平转换后送到上位机(PC机)的串口COM1或COM2,形成一种串行数据采集串行数据传输的方式。
主要元件功能介绍
AT89C2051单片机
AT89C2051是ATMEL公司推出的一种性能价格比极高的 8位单片机,其指令系统与MCS-51系列完全兼容。引脚排列如图1所示。
TLC2543L串行A/D转换器
TLC2543L 采用SPI串行接口总线,SPI串行接口总线由Motorola公司提出,它是一种三线同步接口,分别为同步信号、输入信号和输出信号。另外芯片还有一根片选线,单片机通过片选线选通TLC2543L。其中,CLK为同步时钟脉冲,CS为片选线,DIN为单片机的数据输出和TLC2543L的数据输入线,DOUT为单片机的数据输入线和TLC2543L的数据输出线。图2为TLC2543L时序图。TLC2543L 是全双工的,即数据的发送和接收可同时进行。如果只是对TLC2543L写数据,单片机可以丢弃同时读入的数据;反之,如果只读数据,可以在命令字节后,写入任意数据。数据传送以字节为单位,并采用高位在前的格式。
模块采用TI公司的TLC2543L 12位串行A/D转换器,使用开关电容逐次逼近法完成A/D转换过程。串行输入结构,能够大大节省51系列单片机I/O资源,且价格适中。其特点有:
(1) 11个模拟输入通道;
(2) 转换时间10 s;
(3) 12位分辨率A/D转换器;
(4) 3路内置自测试方式;
(5) 采样率为66kbps;
(6) 线性误差+1LSB(max)
(7) 有转换结束(EOC)输出;
(8) 具有单、双极性输出;
(9) 可编程的MSB或LSB前导;
(10)可编程的输出数据长度。 TLC2543L的引脚排列如图3所示。图3中AIN0~AIN10为模拟输入端; 为片选端;DIN 为串行数据输入端;DOUT为A/D转换结果的三态串行输出端;EOC为转换结束端;CLK为I/O时钟;REF+为正基准电压端;REF-为负基准电压端;VCC为电源;GND为地。
电平转换器MAX232C
MAX232C为RS-232收发器,简单易用,单+5V电源供电,仅需外接几个电容即可完成从TTL电平到RS-232电平的转换,引脚排列如图4所示。
硬件设计
硬件电路如图5所示。
单片机AT89C2051是整个系统的核心,TLC2543L对输入的模拟信号进行采集,转换结果由单片机通过P3.5(9脚)接收,AD芯片的通道选择和方式数据通过P3.4(8脚)输入到其内部的一个8位地址和控制寄存器,单片机采集的数据通过串口(3、2脚)经MAX232C转换成RS232电平向上位机传输。
单片机软件设计
单片机程序主要包括串行数据采集/传输模块的系统信息、通道数、采集周期和通讯协议定义,以及数据采集和传输的标准子程序。
TLC2543L的通道选择和方式数据为8位,其功能为:D7、D6、D5和D4用来选择要求转换的通道,D7D6D5D4=0000时选择0通道,D7D6D5D4=0001时选择1通道,依次类推;D3和D2用来选择输出数据长度,本程序选择输出数据长度为12位,即D3D2=00或D3D2=10;D1,D0选择输入数据的导前位,D1D0=00选择高位导前。
TLC2543L在每次I/O周期读取的数据都是上次转换的结果,当前的转换结果在下一个I/O周期中被串行移出。第一次读数由于内部调整,读取的转换结果可能不准确,应丢弃。
数据采集程序如下:
sbit DATAIN=P1^1;
sbit CLOCK=P1^0;
sbit DATAOUT=P1^2;
sbit CS=P1^3;
bit datain_a_bit0()
{ bit m=0;
DATAOUT=1;
m=DATAOUT;
DATAIN=0;
Nop();
CLOCK=1;
Nop();
CLOCK=0;
Return(m);
}
bit datain_a_bit1()
{ bit m=0;
DATAOUT=1;
m=DATAOUT;
DATAIN=1;
Nop();
CLOCK=1;
Nop();
CLOCK=0;
Return(m);
}
单片机通过编程产生串行时钟,并按时序发送与接收数据位,完成通道方式/通道数据的写入和转换结果的读出,程序如下:
unsigned int Tlc2543L(unsigned char ch)
{unsigned char i,chch=0;<br/>unsigned int xdata xxx=0;<br/>unsigned int xdata y=0;<br/>CS=0;<br/>Chch=ch<<4;<br/>Y=chch;<br/>Y<<=8;<br/>I=0;<br/>While(I<12)<br/>{if((y&0x8000)==0)<br/>{if(datain_a_bit0()==0) xxx&=0xfffe;<br/>else xxx|=0x0001;<br/>if(I!=11) xxx<<=1;<br/>}
else
{if(datain_a_bit1()==0) xxx&=0xfffe;<br/>else xxx|=0x0001;<br/>if(I!=11) xxx<<=1;<br/>}
y<<=1;
I+=1;
}
CS=1;
Return(xxx);
}
串行数据传输模块包括串行口初始化子程序和数据传输子程序,各子程序分别如下。其中数据传输采用查询方式,也可以方便地改为中断方式。
Void rs232init()
{TMOD=0x20;<br/>TH1=0xfd;<br/>TR1=1;<br/>SCON=0x50;<br/>}
void receandtran()
{unsigned char da;<br/>while(!RI)<br/>RI=0;<br/>Da=SBUF;<br/>SBUF==da;<br/>While(!TI);<br/>TI=0;<br/>}
上位机接收数据所用C语言程序包括初始化子程序和接收子程序。各子程序分别如下:
void cominit(void)
{
outportb(0x3fb,0x80);
outportb(0x3f8,0x18); /与单片机波特率一致为9600bps*/
outportb(0x3f9,0x00);
outportb(0x3fb,0x03); /8位数据位,1位停止位,无奇偶校验*/
outportb(0x3fc,0x03); /*Modem控制寄存器设置,使DTR和RTS输出有效*/
outportb(0x3f9,0x00); /*设置中断允许寄存器,禁止一切中断*/
}
void data_rece(void) /*查询方式接收数据子程序*/
{
while(!kbhit())
{
while(!(inportb(0x3fd)&0x01));/*若接收寄存器为空,则等待*/
printf("%x ",inportb(0x3f8)); /*读取结果并显示*/
}
getch();
}
智能化串行采集/传输模块在PCR仪中的应用
在PCR仪的电路设计中,因需要检测的信号很多,包括热盖的温度检测,散热器的温度检测,腔体内部的温度检测,气流的温度检测,光信号的检测等等,为了简化电路,节约成本,减小体积,在选择A/D转换电路时选用了SPI总线的TLC2543,该芯片有多达11路的模拟信号输入端,完全满足PCR仪电路设计的需要,一个芯片既能完成检测多个信号的功能,又能节约单片机的资源,图6是其硬件原理图。
结论
本文所述的智能化串行数据模块,可直接用于任何微机控制和检测系统中以取代原来的模数转换设计。经过实践检验,该模块功耗低、采样精度高、可靠性好、接口简便,有很高的实用价值。该智能模块的软件和硬件成功应用于生命科学仪器“热循环仪”的设计和实践中,使用方便,简单可行,节约成本,能够满足大多数数据采样的应用场合。
㈢ 单片机论文的总结语
总结嘛,只要掌握了方法,谁都会写。
1、概括一下你完成的任务,可以在摘要基础上稍微调整一个文字;突出本次设计的优点。
2、对存在的问题稍微提一下,给后来人以建议,比如说你觉得你的设计时还有哪些问题没有考虑,希望后来人(假设有)在你的基础上在哪些方面需要考虑或者注意。
㈣ 单片机实训心得
兄弟。我也是实习这个,真有缘。 把我的借你抄吧。
单片机实训心得
这个星期参加单片机实习,让我受益匪浅,让我对这个书本大小的电路板有了更深刻的认识。这次实习我们使用控制电路的单片机是AT89S52。开始点亮第一个发光二极管就出问题,这对准备大干一场的我是个不小的打击。老师过来检查发现我用的是P0口,而其他同学用的是P1口,十分欣慰,指正P0口应从第二个端口接线。之后的实习也是波折起伏,发光二级管,数码管,独立按键,定时计速器,程序调试无数次,从中也总结出不少调试的技巧,写好一个漂亮的程序,首先需要冷静的思考,其次需要细心的排序,排除先后主次的关系。接着逻辑性要明显,每一句要明确存在的意义。其中有很多程序是我自己写的,因为一个跟着老师板书的学生是永远没有自己的作品的。虽然其中存在很多错误,但是我在调试中成长。一个星期的实习很快就过去了。在此我感谢老师的教导,感谢同学们的鼓励,感谢自己的独树一帜,让我对这个小小的电路板有了大大的认识。
(其实我觉得单片机实习真的没什么好写的,随便扯。要不就抄实习报告上面的任务指南。单片机说来说去就是一个板子,又不可能说成一朵花。哎。。。)
㈤ 单片机汇编语言总结{越完整越好}
一般我们现在用的比较多的是MCS-51的单片机,它的资料比较多,用的人也很多,市场也很大。就我个人的体会怎么样才能更快的学会单片机这门课。单片机这门课是一项非常重视动手实践的科目,不能总是看书,但是学习它首先必须得看书,因为从书中你需要大概了解一下,单片机的各个功能寄存器,而说明白点,我们使用单片机就是用软件去控制单片机的各个功能寄存器,再说明白点,就是控制单片机那些管脚的电平什么时候输出高,什么时候输出低。由这些高低电平的变化来控制你的系统板,实现我们需要的各个功能。至于看书,只需大概了解单片机各管脚都是干什么的?能实现什么样的功能?第一次,第二次你可能看不明白,但这不要紧,因为还缺少实际的感观认识。所以我总是说,学单片机看书看两三天的就够了,看小说你一天能看五六本,看单片机你两三天看两三遍就够了,可以不用仔细的看。推荐一本书,就这一本就足够,书名是《新编MCS-51单片机应用设计》,是哈尔滨工业大学出版社出的的,作者是张毅刚。大概了解一下书上的内容,然后实践,这是非常关键的,如果说学单片机你不实践那是不可能学会的,关于实践有两种方法你可以选择,一种方法:你自己花钱买一块单片机的学习板,不要求功能太全的,对于初学者来说你买功能非常多的那种板子,上面有很多东西你这辈子都用不着,我建议有流水灯、数码管、独立键盘、矩阵键盘、AD或DA(原理一样)、液晶、蜂鸣器,这就差不多了。如果上面我提到的这些,你能熟练应用,那可以说对于单片机方面的硬件你已经入门了,剩下的就是自己练习设计电路,不断的积累经验。只要过了第一关,后面的路就好走多了,万事开头难,大家可能都听过。方法二:你身边如果有单片机方面的高手,向他求助,让他帮你搭个简单的最小系统板。对于高手来说,做个单片机的最小系统板只需要一分钟的时间,而对于初学者可就难多了,因为只有对硬件了解了,才能熟练运用。而如果你身边没有这样的高手,又找不到可以帮助你的人,那我劝你最好是自己买上一块,毕竟自己有一块要方便的多,以后做单片机类的小实验时都能用得上,还省事。
有了单片机学习板之后你就要多练习,最好是自己有台电脑,一天少看电影,少打游戏,把学习板和电脑连好,打开调试软件坐在电脑前,先学会怎么用调试软件,然后从最简单的流水灯实验做起,等你能让那八个流水灯按照你的意愿随意流动时你已经入门了,你会发现单片机是多么迷人的东西啊,太好玩了,这不是在学习知识,而是在玩,当你编写的程序按你的意愿实现时你比做什么事都开心,你会上瘾的,真的。做电子类的人真的会上瘾。然后让数码管亮起来,这两项会了后,你已经不能自拔了,你已经开始考虑你这辈子要走哪一行了。就是要这样练习,在写程序的时候你肯定会遇到很多问题,而这时你再去翻书找,或是问别人,当得到解答后你会记住一辈子的,知识必须用于现实生活中,解决实际问题,这样才能发挥它的作用,你自己好好想想,上了这么多年大学,天天上课,你在课堂上学到了什么?是不是为了期末考试而忙碌呢?考完得了90分,哈哈哈好高兴啊,下学期开学回来忘的一干二净,是不是?你学到什么了?但是我告诉你单片机一旦学会,永远不会忘了。另外我再说说用汇编和C语言编程的问题。很多同学大一二就开设了C语言的课,我也上过,我知道那时天天就是几乘几,几加几啊,求个阶乘啊。学完了有什么用?让你用C语言编单片机的程序你是不是就傻了?书上的东西我们必须要会运用。单片机编程用C语言或汇编语言都可以,但是我建议用C语言比较好,如果原来有C语言的基础那学起来会更好,如果没有,也可以边学单片机边学C语言,C语言也挺简单,只是一门工具而已,我劝你最好学会,将来肯定用得着,要不你以后也得学,你一点汇编都不会根本无所谓,但你一点C语言都不会那你将来会吃苦头。汇编写程序代码效率高,但相对难度较大,而且很罗嗦,尤其是遇到算法方面的问题时,根本是麻烦的不得了,现在单片机的主频在不断的提高,我们完全不需要那么高效率的代码,因为有高频率的时钟,单片机的ROM也在不断的提高,足够装得下你用C语言写的任何代码,C语言的资料又多又好找,将来可移植性非常好,只需要变一个IO口写个温度传感器的程序在哪里都能用,所以我劝大家用C语言。
总结上面,只要你有信心,做事能坚持到底,有不成功不放弃的强烈意志,那学个单片机来说就是件非常容易的事。
步骤:
1.找本书大概了解一下单片机结构,大概了解就行。不用都看懂,又不让你出书的。
2.找学习板练习编写程序,学单片机就是练编程序,遇到不会的再问人或查书。(我当初就买了中国开发板网一个单片机开发板,网址如下:)
3.自己网上找些小电路类的资料练习设计外围电路。焊好后自己调试,熟悉过程。
4.自己完全设计具有个人风格的电路,产品。
“知无不言.言无不尽.百人誉之不加密.百人毁之不加疏.”-- 诸葛廷栋
㈥ 单片机论文
基于MSP430单片机的电源监控管理系统
引言
大功率直流开关电源由PFC和DC-DC变换器组成,为了提高可靠性,并能够对其进行脱机或远程监控管理,在开关电源模块内设置监控管理系统。该系统对电源故障类进行监控,对电源输出的电压电流进行自动设定和调节,通过串行通信接口,与远程中心监控站进行远程监控和管理,这一功能在通信系统基站供电系统中尤为重要。本文提出了一种基于MSP430单片机的电源监控管理系统的设计和实现。
1系统结构和硬件电路设计
系统的整体设计结构如图1所示。本系统采用的核心芯片为TI公司推出16位系列单片机MSP430。MSP430具有集成度高,外围设备丰富,超低功耗等优点。单片集成了多通道12bit的A/D转换、片内精密比较器、多个具有PWM功能的定时器、片内USART、看门狗定时器、片内数控振荡器(DCO)、大量的I/O端口以及大容量的片内存储器,采用串行在线编程方法,单片可以满足绝大多数的应用需要。MSP430的这种高集成度使应用人员不必在接口、外接I/O及存储器上花太多的精力,而可以方便的设计真正意义上的单片系统,在许多领域得到了广泛的应用。下面介绍该系统可以实现的功能和基于MSP430F149的电控系统的设计。
1.1系统功能:
a.开机控制。上电后,单片机开始工作,按下电源键,点亮指示灯后,将电网220V接入PFC,开关电源启动工作,然后接于负载。
b.电压设定和调节。用单片机A/D口采集开关电源的输出电压值,并显示于液晶屏上,通过单片机控制数字电位计调节输出电压值,实现自动调节;或者通过键盘的左右键选出电压调节页面,用上下键进行手动调节;也可以通过通信接口实现远程调节。
c.电流调节。多台开关电源并联使用时,要求各台电源的负载电压相等。单片机A/D口采集转换成电压值的负载电流值,通过通信口得到各台电流值,取电流平均值,控制数字电位计调节输出电压,使输出负载电流达到平均值;或者通过键盘的左右键选出电流调节页面,用上下键进行手动调节。
d.故障报警。单片机通过光电耦合器检测到各项输入输出故障时,扬声器产生蜂鸣,相应的报警灯闪烁,并在液晶屏上显示故障类型及处理方法。
e.监测。单片机A/D口对电网电压,输出电压,输出电流进行采集测量,当出现超限时进行报警。
f.通信。包括单片机与各台开关电源间的通信和单片机与中心监控站的通信。
1.2电压调节电路
电压调节电路由单片机、数字电位计X9313和可调分流基准芯片TL431组成,其电路原理图如图2所示。Xicor9313是固态非易失性电位器,可用作数字控制的微调电位器。TL431是TI生产的一个有良好的热稳定性能的三端可调分流基准源,它的输出电压用两个电阻就可以任意地设置到从VREF(2.5V)到36V范围内的任何值。工作时,单片机的一个IO控制INC计数输入脚,为其提供计数脉冲,此输入端为下降沿触发。另一个IO控制U/D升降输入端,当U/D为高电平时,X9313内部计数器进行加法计数,VW端的输出电压上升,由于VW接地,使VH端电压降低,而TL431的REF输出端电压为恒定的2.5V,从而使Vcc处输出电压升高;同理当U/D为低电平时,Vcc处输出电压降低,这样就实现了电压输出调节。
1.3模拟数据采集
MSP430F149内嵌入一个高精度的,具有采样与保持功能的12位ADC转换模块,内部提供各种采样与保持时钟源。MSP430有8个外部输入通道可选,最高采样速度可达200KHZ,并且还内置温度传感器,可以测量芯片内的温度,如果测量温度高于或低于预设的温度是,可以通过外接部件显示告警信息,同时具有6种可编程选择的内部参考电压。该转换模块为一些需要模拟量采集的场合提供了便利。我们选择的参考电压是0~2.5V,这样MSP430F149的AD分辨率就是2.5/4096=0.61V左右。由于输入的模拟电压量较高,不能直接与单片机的ADC采样端口相连,因此用串联一个滑动变阻器的方法进行了降压处理,成功解决了上述问题。
1.4人机对话设计
系统的人机操作界面由液晶显示屏、指示灯和键盘组成。液晶选用的是基于T6963C的液晶模块YM12864。键盘采用的是3×3的阵列接法,系统采用了图形用户界面,操作简单易行,显示实用美观。工作时,液晶屏可以实时显示采集到的电网电压、输出电压、输出电流及各种报警信息,操作相应键盘可以进行显示页面的切换,对输出电压,输出电流进行自动、手动及远程控制调节。当有报警信息产生时,相应得指示灯会闪烁警示,同时与单片机连接的扬声器会产生报警蜂鸣声,以提醒操作人员做出相应的处理。
2系统软件设计
430支持汇编语言和C语言两种语言编程,因此可以在一个工程文件中同时用两种语言,使用汇编语言,便于在调试时寻找逻辑和指令的联系及地址的定位正确与否。使用C语言进行编程大大减少了工作量,编好后的程序可读性好,易于修改和维护。开发工具使用IARSystems公司的IAREmbeddedWorkbench,它集成了编辑、编译、链接、下载与在线调试(Debug)等多种功能,使用方便,并具备高效的C语言编译能力。
考虑到软件开发效率及可维护性,系统软件设计遵循模块化的编程思想,将系统功能划分为几个相对独立的功能模块。它们包括:液晶显示模块、AD转换模块、按键监测响应模块、报警监测响应模块、电压电流调节模块、数据处理模块、通信模块。每个模块都要进行独立的测试,最后结合到一起。整个系统的软件流程图如图3所示。
按键监测模块是其中的重要组成部分,它控制着AD转换的启动,显示页面的切换,及电压电流的自动调节,手动调节,远程调节的启动和切换。报警监测模块对开关电源的保护起着至关重要的作用,它实时的监测着开关电源是否出现故障,当发生输入电压过压,输入电压欠压,PFC故障时应切断总电源,当发生输出电压过压,输出电压欠压,模块过热,及IPM保护故障时应关断DC-DC变换器。
在对各模块进行整合时,要注意各中断之间的冲突。由于在MSP430的中断优先级中,ADC12采样转换中断优先级高于TIMERA中断,因此当在响应TIMERA中断的过程中会执行ADC12采样转换中断,或者TIMERA的中断响应被迫延迟,这样就会影响在TIMERA中断中执行的报警监测响应程序,不能达到对开关电源故障类的实时检测。在本系统中,利用按键控制ADC12采样转换中断的启动和关闭,从而解决中断冲突。
3结论
本文在基于MSP430F149电源监控管理系统的设计和实现的基础上对MSP430的系统设计做了讨论,提出并解决了在设计中出现的问题。本文作者的创新点:利用MSP430的系统结构简单,外围电路少,效率高的特点,设计实现了简洁直观、使用方便、操作全程汉字提示、监控能力强、运行稳定、安全可靠的电源监控管理系统,大大降低了成本,取得了相当可观的经济效益,满足实际需求。
㈦ 求一篇单片机实训总结......
这里有,但是无法复制,你自己看看吧
http://blog.sina.com.cn/s/reader_4b14a217010008ur.html
㈧ 单片机实习报告范文
我的毕业论文是用51单片机实现煤气泄漏检测及报警系统
㈨ 单片机走马灯总结怎么写就100字左右
最近无意间看到了涉及到跑马灯效果的代码,于是在网上查阅了很多资料,在这里对自己看的一些文章进行一下总结,顺便加上自己的一些体会。
首先我们要实现走马灯这样一个效果,通常来说都是在TextView这个控件中来实现的,而且其中的文字一定是单行显示,如果多行显示,那走马灯效果也就失去了存在的意义。另外,在EditText中使用走马灯没有必要,也不合理,实际上对于EditText来说android:ellipsize这个属性只有对于设置在android:hint中的文字
的时候是有用的,而且android:ellipsize="marquee"这个用法不能用在EditText控件上。对于在EditText用户输入的文字,android:ellipsize这个属性没有用处。关于EditText
设置android:ellipsize的相关用法以后再讲,在这里也算留个标记,以防自己忘了。