导航:首页 > 操作系统 > 51单片机实例100

51单片机实例100

发布时间:2024-05-21 06:42:07

Ⅰ 51单片机程序编写

/*这是用LCD显示所测温度的代码,你参考一下,如果没问题的话,其他的功能你再添加就好了,不难*/

#include<reg52.h>

#include<intrins.h>

#define uint unsigned int

#define uchar unsigned char

#define Nack_number 10

//**************端口定义**************************************************

uchar flag; //LCD控制线接口

sbit RS=P1^0; //RS端

sbit RW=P1^1; //读写端

sbit LCDE=P2^5; //使能端

//mlx90614端口定义

sbit SCK=P2^1; //时钟线

sbit SDA=P2^2; //数据线

//************数据定义****************************************************

bdata uchar flag1; //可位寻址数据

sbit bit_out=flag1^7;

sbit bit_in=flag1^0;

uchar tempH,tempL,err;


//************************** LCD1602 ***********************************

//向LCD写入命令或数据*****************************************************

#define LCD_COMMAND 0 //命令

#define LCD_DATA 1 // 数据

#define LCD_CLEAR_SCREEN 0x01 // 清屏

#define LCD_HOMING 0x02 // 光标返回原点

//设置显示模式******* 0x08+ *********************************************

#define LCD_SHOW 0x04 //显示开

#define LCD_HIDE 0x00 //显示关

#define LCD_CURSOR 0x02 //显示光标

#define LCD_NO_CURSOR 0x00 //无光标

#define LCD_FLASH 0x01 //光标闪动

#define LCD_NO_FLASH 0x00 //光标不闪动

//设置输入模式********** 0x04+ ********************************************

#define LCD_AC_UP 0x02 //光标右移 AC+

#define LCD_AC_DOWN 0x00 //默认 光标左移 AC-

#define LCD_MOVE 0x01 //画面可平移

#define LCD_NO_MOVE 0x00 //默认 画面不移动


//************************** mlx90614 ***********************************

//command mode 命令模式

#define RamAccess 0x00 //对RAM操作

#define EepomAccess 0x20 //对EEPRAM操作

#define Mode 0x60 //进入命令模式

#define ExitMode 0x61 //退出命令模式

#define ReadFlag 0xf0 //读标志

#define EnterSleep 0xff //进入睡眠模式

//ram address read only RAM地址(只读)

#define AbmientTempAddr 0x03 //周围温度

#define IR1Addr 0x04

#define IR2Addr 0x05

#define LineAbmientTempAddr 0x06 //环境温度

/*0x0000 0x4074 16500 0.01/单元

-40 125*/

#define LineObj1TempAddr 0x07 //目标温度,红外温度

/*0x27ad-0x7fff 0x3559 22610 0.02/单元

-70.01-382.19 0.01 452.2*/

#define LineObj2TempAddr 0x08

//eepom address EEPROM地址

#define TObjMaxAddr 0x00 //测量范围上限设定

#define TObjMinAddr 0x01 //测量范围下限设定

#define PWMCtrlAddr 0x02 //PWM设定

#define TaRangeAddr 0x03 //环境温度设定

#define KeAddr 0x04 //频率修正系数

#define ConfigAddr 0x05 //配置寄存器

#define SMbusAddr 0x0e //器件地址设定

#define Reserverd1Addr 0x0f //保留

#define Reserverd2Addr 0x19 //保留

#define ID1Addr 0x1c //ID地址1

#define ID2Addr 0x1d //ID地址2

#define ID3Addr 0x1e //ID地址3

#define ID4Addr 0x1f //ID地址4


//************函数声明*****************************************************

void start(); //MLX90614发起始位子程序

void stop(); //MLX90614发结束位子程序

uchar ReadByte(void); //MLX90614接收字节子程序

void send_bit(void); //MLX90614发送位子程序

void SendByte(uchar number); //MLX90614接收字节子程序

void read_bit(void); //MLX90614接收位子程序

void delay(uint N); //延时程序

uint readtemp(void); //读温度数据

void init1602(void); //LCD初始化子程序

void busy(void); //LCD判断忙子程序

void cmd_wrt(uchar cmd); //LCD写命令子程序

void dat_wrt(uchar dat); //LCD写数据子程序

void display(uint Tem); //显示子程序

void Print(uchar *str); //字符串显示程序


//*************主函数*******************************************

void main()

{

uint Tem; //温度变量

SCK=1;

SDA=1;

delay(4);

SCK=0;

delay(1000);

SCK=1;

init1602(); //初始化LCD

while(1)

{

Tem=readtemp(); //读取温度

cmd_wrt(0x01); //清屏

Print(" Temperature: "); //显示字符串 Temperature: 且换行

display(Tem); //显示温度

Print(" ^C"); //显示摄氏度

delay(10000); //延时再读取温度显示

}

}

void Print(uchar *str) //字符串显示程序

{

while(*str!='') //直到字符串结束

{

dat_wrt(*str); //转成ASCII码

str++; //指向下一个字符

}

}


//*********输入转换并显示*********

void display(uint Tem)

{

uint T,a,b;

T=Tem*2;

if(T>=27315) //温度为正

{

T=T-27315; //

a=T/100; //温度整数

b=T-a*100; //温度小数

if(a>=100) //温度超过100度

{

dat_wrt(0x30+a/100); //显示温度百位

dat_wrt(0x30+a%100/10); //显示温度十位

dat_wrt(0x30+a%10); //显示温度个位

}

else if(a>=10) //温度超过10度

{

dat_wrt(0x30+a%100/10); //显示温度十位

dat_wrt(0x30+a%10); //显示温度个位

}

else //温度不超过10度

{

dat_wrt(0x30+a); //显示温度个位

}

dat_wrt(0x2e); //显示小数点

if(b>=10) //温度小数点后第1位数不等于0

{

dat_wrt(0x30+b/10); //显示温度小数点后第1位数

dat_wrt(0x30+b%10); //显示温度小数点后第2位数

}

else //温度小数点后第1位数等于0

{

dat_wrt(0x30); //显示温度小数点后第1位数0

dat_wrt(0x30+b); //显示温度小数点后第2位数

}

}

else //温度为负

{

T=27315-T;

a=T/100;

b=T-a*100;

dat_wrt(0x2d); //显示负号

if(a>=10) //温度低于负10度

{

dat_wrt(0x30+a/10); //显示温度十位

dat_wrt(0x30+a%10); //显示温度个位

}

else //温度高于负10度

{

dat_wrt(0x30+a); //显示温度个位

}

dat_wrt(0x2e); //显示小数点

if(b>=10) //温度小数点后第1位数不等于0

{

dat_wrt(0x30+b/10); //显示温度小数点后第1位数

dat_wrt(0x30+b%10); //显示温度小数点后第2位数

}

else //温度小数点后第1位数等于0

{

dat_wrt(0x30); //显示温度小数点后第1位数0

dat_wrt(0x30+b); //显示温度小数点后第2位数

}

}

}

//************************************

void start(void) //停止条件是 SCK=1时,SDA由1到0

{

SDA=1;

delay(4);

SCK=1;

delay(4);

SDA=0;

delay(4);

SCK=0;

delay(4);

}

//------------------------------

void stop(void) //停止条件是 SCK=1时,SDA由0到1

{

SCK=0;

delay(4);

SDA=0;

delay(4);

SCK=1;

delay(4);

SDA=1;

}

//---------发送一个字节---------

void SendByte(uchar number)

{

uchar i,n,dat;

n=Nack_number; //可以重发次数

Send_again:

dat=number;

for(i=0;i<8;i++) //8位依次发送

{

if(dat&0x80) //取最高位

{

bit_out=1; //发1

}

else

{

bit_out=0; //发0

}

send_bit(); //发送一个位

dat=dat<<1; //左移一位

}

read_bit(); //接收1位 应答信号

if(bit_in==1) //无应答时重发

{

stop();

if(n!=0)

{

n--; //可以重发Nack_number=10次

goto Repeat; //重发

}

else

{

goto exit; //退出

}

}

else

{

goto exit;

}

Repeat:

start(); //重新开始

goto Send_again; //重发

exit: ; //退出

}

//-----------发送一个位---------

void send_bit(void)

{

if(bit_out==1)

{

SDA=1; //发1

}

else

{

SDA=0; //发0

}

_nop_();

SCK=1; //上升沿

delay(4);delay(4);

SCK=0;

delay(4);delay(4);

}

//----------接收一个字节--------

uchar ReadByte(void)

{

uchar i,dat;

dat=0; //初值为0

for(i=0;i<8;i++)

{

dat=dat<<1; //左移

read_bit(); //接收一位

if(bit_in==1)

{

dat=dat+1; //为1时对应位加1

}

}

SDA=0; //发送应答信号0

send_bit();

return dat; //带回接收数据

}

//----------接收一个位----------

void read_bit(void)

{

SDA=1; //数据端先置1

bit_in=1;

SCK=1; //上升沿

delay(4);delay(4);

bit_in=SDA; //读数据

_nop_();

SCK=0;

delay(4);delay(4);

}



//------------------------------

uint readtemp(void)

{

SCK=0;

start(); //开始条件

SendByte(0x00); //发送从地址00

SendByte(0x07); //发送命令

start(); //开始条件

SendByte(0x01); //读从地址00

bit_out=0;

tempL=ReadByte(); //读数据低字节

bit_out=0;

tempH=ReadByte(); //读数据高字节

bit_out=1;

err=ReadByte(); //读错误信息码

stop(); //停止条件

return(tempH*256+tempL);

}

//******************LCD显示子函数***********************

void init1602(void) //初始化LCD

{

cmd_wrt(0x01); //清屏

cmd_wrt(0x0c); //开显示,不显示光标,不闪烁

cmd_wrt(0x06); //完成一个字符码传送后,光标左移,显示不发生移位

cmd_wrt(0x38); //16×2显示,5×7点阵,8位数据接口

}

void busy(void) //LCD忙标志判断

{

flag=0x80; //赋初值 高位为1 禁止

while(flag&0x80) //读写操作使能位禁止时等待 继续检测

{

P0=0xff;

RS=0; //指向地址计数器

RW=1; //读

LCDE=1; //信号下降沿有效

flag=P0; //读状态位 高位为状态

LCDE=0;

}

}

void cmd_wrt(uchar cmd) //写命令子函数

{

LCDE=0;

busy(); //检测 读写操作使能吗

P0=cmd; //命令

RS=0; //指向命令计数器

RW=0; //写

LCDE=1; //高电平有效

LCDE=0;

}

void dat_wrt(uchar dat) //写数据子函数

{

busy(); //检测 读写操作使能吗

LCDE=0;

if(flag==16)

{

RS=0; //指向指令寄存器

RW=0; //写

P0=0XC0; //指向第二行

LCDE=1; //高电平有效

LCDE=0;

}

RS=1; //指向数据寄存器

RW=0; //写

P0=dat; //写数据

LCDE=1; //高电平有效

LCDE=0;

}

//------------延时--------------

void delay(uint n)

{

uint j;

for(j=0;j<n;j++)

{

_nop_();

}

}


Ⅱ 大家帮忙找一些51单片机的基本C语言程序例子,最好带说明,谢啦

中断控制程序:

#include <AT89X52.H>

#define uchar unsigned char
#define uint unsigned int
#define port_count P2 //P2接8LED接口
//将计数器的二进制值用8个LED显示出来
uchar count;//计数器(存储中断次数)

void main(void)
{
count=0; //清零计数器
port_count=~count;//清零P2口
IT0=1; //INT0设为边沿触发方式�IT0=0则为电平触发方式
EX0=1; //开INT0中断
EA=1; //开系统中断
while(1); //等待中断处理

}

//INT0中断处理函数
void int0_interrupt() interrupt 0 //INT0中断号0
{
count++;
port_count=~count; //当达到255时,溢出,又从0开始

}

I/O控制程序:
#include <AT89X52.H>
#include <intrins.h>

#define uchar unsigned char
#define uint unsigned int
#define flowlight P2
void delay10ms()
{uchar a,b;
for(a=200;a>0;a--)
for(b=225;b>0;b--);
}
void main()
{
uchar flag=0;//判断移动方向 flag==0 左移 flag==1 右移
uchar port_state=0x01;
flowlight=~port_state;
while(1)
{
delay10ms();
if(port_state==0X80&&flag==0)
{
flag=1; //流水灯左移到第八位又移回来 ~1000 0000
}
else
if(port_state==0X01&&flag==1)
{
flag=0; //流水灯右移到第1位又移回来 ~0000 0001
}
if(flag==0)
{
port_state=port_state<<1;
flowlight=~port_state;
}
else
{
port_state=port_state>>1;
flowlight=~port_state;
}
}

串口通信程序:
主机程序:
#include <AT89X52.H>
#define NODE_ADDR 3 //目的节点地址
#define COUNT 10 //发送缓冲区buffer大小
typedef unsigned char uchar;
uchar buffer[COUNT]; //定义buffer
int pt; //设置指针
main()//////////////////////////////////////////发送程序
{

//buffer初始化
pt=0;
while(pt<COUNT)
{
buffer[pt]='1'+pt; //[buffer]=0X31,[buffer+1]= 0X32,[buffer+2] 0X33........
pt++;
}
////初始化串口和T1(波特率发生器)/////////PCON缺省为0
PCON=0X00;
SCON=0Xc0; //SCON=1100 0000B,置串口为方式3, SM2=0,REN=0,主机不接收地址帧
TMOD=0X20; //20H=0010 0000B,置T1为方式2,TR1控制T1的开关,定时器方式
TH1=253;TL1=253; //方式2为自动重装///f(bps)=9600bps (f(osc)=11.0592MHZ)
TR1=1; //启动T1
ET1=0; //关T1中断 由于自动重装
ES=1; //开串口中断
EA=1; //开系统中断
pt=0;

///////////////发送地址帧
TB8=1; //地址帧标志
SBUF=NODE_ADDR; //发送目的节点地址
while(pt<COUNT); //等待发送完全部数据
while(1);//不执行任何操作
} //end main

/////发送完中断函数
void send()interrupt 4
{
TI=0; //清发送中断标志
if(pt<COUNT)
{
//发送一帧数据
TB8=0;//数据帧标志
SBUF=buffer[pt]; //启动发送
pt++;//指针指向下一单元
}

else
{
ES=0; //关串口中断
EA=0; //关系统中断
return; //若发送完则停止发送并返回
}

}
接收程序:
#include<reg52.h>
#define uchar unsigned char

#define NODE_ADDR 3 //本机节点地址
#define COUNT 10 //定义接收缓冲区buffer大小
uchar buffer[COUNT]; //定义buffer
int pt; //当前位置指针

void send_char_com(unsigned char ch); //向串口发送一个字符的函数声明
void delay(void);

main() ////////////////串行异步从机接收程序
{
PCON=0X00; //初始化串口和T1(波特率发生器)/////////PCON缺省为0
SCON=0XF0; //SCON=1111 0000B,方式3,SM2=1,REN=1,允许接收地址帧
TMOD=0X20; //20H=0010 0000B,置T1为方式2,TR1控制T1的开关,定时器方式
TH1=253;TL1=253; //方式2为自动重装///f(bps)=9600bps (f(osc)=11.0592MHZ)
TR1=1; //启动T1
ET1=0; //关T1中断 由于自动重装
ES=1; //开串口中断
EA=1; //开系统中断
pt=0;
while(pt<COUNT); //等待接收地址帧和全部数据帧
delay() ;
//接收完后返回数据
SCON=0XC0; //SCON=1100 0000B,置串口为方式3, SM2=0,REN=0,主机不接收地址帧
EA=0;
for(pt=0;pt<COUNT;pt++)
{
send_char_com(buffer[pt]);

}
while(1);
} //end main

///////////串口接收中断函数
void receive()interrupt 4 using 3
{
RI=0; //清除接收中断标志
if(RB8==1) //地址帧
{//若为本机地址,则置SM2=0,以便接收数据
if(SBUF==NODE_ADDR)
{
SM2=0;
}

}
/////RB8=0,数据帧
else if(RB8==0)
{buffer[pt]=SBUF; //数据帧送buffer
pt++;
if(pt>=COUNT)
SM2=1; //若接收完全部数据帧,则通信结束;置SM2=1,准备下一次通信
}

}

//向串口发送一个字符
void send_char_com(unsigned char ch)
{
SBUF=ch;
while(TI==0);
TI=0;
}

///////////////////////////////////////////////////////////////////////////////////

void delay(void)
{uchar i=100;
while(i--);
}

Ⅲ 51单片机用计数器中断实现100以内的按键计数,汇编语言程序

试试下列程序:
ORG 0000H
JMP START
ORG 000BH
JMP T0_INT
;------------------------------
START:
MOV TMOD, #06H
MOV TH0, #255
MOV TL0, #255
MOV IE, #82H
SETB TR0
MOV R2, #0
MOV R3, #0
MOV DPTR, #TAB
;------------------------------
M_LOOP:
MOV A, R3
MOVC A, @A + DPTR
MOV P2, A
MOV A, R2
MOVC A, @A + DPTR
MOV P0, A
SJMP M_LOOP
;------------------------------
T0_INT:
JNB P3.4, T0_INT
INC R3
CJNE R3, #10, T0_END
MOV R3, #0
INC R2
CJNE R2, #10, T0_END
MOV R2, #0
T0_END:
RETI
;------------------------------
TAB: DB 0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f
;------------------------------
END

Ⅳ 51单片机,1到100的累加和,keil软件

;下列程序,经过仿真调试,结果是:(30H)=BAH, (31H)=13H
;程序如下:
MOV 30H, #0
MOV 31H, #0
MOV DPTR, #1
MOV R2, #10
LOOP1:
MOV R3, #10
LOOP2:
MOV A, 30H
ADD A, DPL
MOV 30H, A
MOV A, 31H
ADDC A, DPH
MOV 31H, A
INC DPTR
DJNZ R3, LOOP2
DJNZ R2, LOOP1
RET
;完

Ⅳ 《单片机C语言程序设计实训100例——基于8051+Proteus仿真》 第03篇源代码

单片机c语言编程100个实例目录1
函数的使用和熟悉
实例3:用单片机控制第一个灯亮
实例4:用单片机控制一个灯闪烁:认识单片机的工作频率
实例5:将 P1口状态分别送入P0、P2、P3口:认识I/O口的引脚功能
实例6:使用P3口流水点亮8位LED
实例7:通过对P3口地址的操作流水点亮8位LED
实例8:用不同数据类型控制灯闪烁时间
实例9:用P0口、P1 口分别显示加法和减法运算结果
实例10:用P0、P1口显示乘法运算结果
实例11:用P1、P0口显示除法运算结果
实例12:用自增运算控制P0口8位LED流水花样
实例13:用P0口显示逻辑"与"运算结果
实例14:用P0口显示条件运算结果
实例15:用P0口显示按位"异或"运算结果
实例16:用P0显示左移运算结果
实例17:"万能逻辑电路"实验
实例18:用右移运算流水点亮P1口8位LED
实例19:用if语句控制P0口8位LED的流水方向
实例20:用swtich语句的控制P0口8位LED的点亮状态
实例21:用for语句控制蜂鸣器鸣笛次数
实例22:用while语句控制LED
实例23:用do-while语句控制P0口8位LED流水点亮
实例24:用字符型数组控制P0口8位LED流水点亮
实例25: 用P0口显示字符串常量
实例26:用P0 口显示指针运算结果
实例27:用指针数组控制P0口8位LED流水点亮
实例28:用数组的指针控制P0 口8 位LED流水点亮
实例29:用P0 、P1口显示整型函数返回值
实例30:用有参函数控制P0口8位LED流水速度
实例31:用数组作函数参数控制流水花样
实例32:用指针作函数参数控制P0口8位LED流水点亮
实例33:用函数型指针控制P1口灯花样
实例34:用指针数组作为函数的参数显示多个字符串
单片机c语言编程100个实例目录2
实例35:字符函数ctype.h应用举例
实例36:内部函数intrins.h应用举例
实例37:标准函数stdlib.h应用举例
实例38:字符串函数string.h应用举例
实例39:宏定义应用举例2
实例40:宏定义应用举例2
实例41:宏定义应用举例3
* 中断、定时器中断、定时器 *中断、定时器*中断、定时器 /
实例42:用定时器T0查询方式P2口8位控制LED闪烁
实例43:用定时器T1查询方式控制单片机发出1KHz音频
实例44:将计数器T0计数的结果送P1口8位LED显示
实例45:用定时器T0的中断控制1位LED闪烁
实例46:用定时器T0的中断实现长时间定时
实例47:用定时器T1中断控制两个LED以不同周期闪烁
实例48:用计数器T1的中断控制蜂鸣器发出1KHz音频
实例49:用定时器T0的中断实现"渴望"主题曲的播放
实例50-1:输出50个矩形脉冲
实例50-2:计数器T0统计外部脉冲数
实例51-2:定时器T0的模式2测量正脉冲宽度
实例52:用定时器T0控制输出高低宽度不同的矩形波
实例53:用外中断0的中断方式进行数据采集
实例54-1:输出负脉宽为200微秒的方波
实例54-2:测量负脉冲宽度
实例55:方式0控制流水灯循环点亮
实例56-1:数据发送程序
实例56-2:数据接收程序
实例57-1:数据发送程序
实例57-2:数据接收程序
实例58:单片机向PC发送数据
实例59:单片机接收PC发出的数据
*数码管显示*数码管显示 数码管显示数码管显示*/
实例60:用LED数码显示数字5
实例61:用LED数码显示器循环显示数字0~9
实例62:用数码管慢速动态扫描显示数字"1234"
实例63:用LED数码显示器伪静态显示数字1234
实例64:用数码管显示动态检测结果
实例65:数码秒表设计
实例66:数码时钟设计
实例67:用LED数码管显示计数器T0的计数值
实例68:静态显示数字“59”
单片机c语言编程100个实例目录3
键盘控制*键盘控制* *键盘控制 *键盘控制 */
实例69:无软件消抖的独立式键盘输入实验
实例70:软件消抖的独立式键盘输入实验
实例71:CPU控制的独立式键盘扫描实验
实例72:定时器中断控制的独立式键盘扫描实验
实例73:独立式键盘控制的4级变速流水灯
实例74:独立式键盘的按键功能扩展:"以一当四"
实例75:独立式键盘调时的数码时钟实验
实例76:独立式键盘控制步进电机实验
实例77:矩阵式键盘按键值的数码管显示实验
//实例78:矩阵式键盘按键音
实例79:简易电子琴
实例80:矩阵式键盘实现的电子密码锁
液晶显示LCD*液晶显示LCD *液晶显示LCD * *液晶显示LCD*液晶显示LCD *液晶显示LCD */
实例81:用LCD显示字符'A'
实例82:用LCD循环右移显示"Welcome to China"
实例83:用LCD显示适时检测结果
实例84:液晶时钟设计
*一些芯片的使用*24c02 DS18B20 X5045 ADC0832 DAC0832 DS1302 红外遥控/
实例85:将数据"0x0f"写入AT24C02再读出送P1口显示
实例86:将按键次数写入AT24C02,再读出并用1602LCD显示
实例87:对I2C总线上挂接多个AT24C02的读写操作
实例88:基于AT24C02的多机通信 读取程序
实例89:基于AT24C02的多机通信 写入程序
实例90:DS18B20温度检测及其液晶显示
实例91:将数据"0xaa"写入X5045再读出送P1口显示
实例92:将流水灯控制码写入X5045并读出送P1口显示
实例93:对SPI总线上挂接多个X5045的读写操作
实例94:基于ADC0832的数字电压表
实例95:用DAC0832产生锯齿波电压
实例96:用P1口显示红外遥控器的按键值
实例97:用红外遥控器控制继电器
实例98:基于DS1302的日历时钟
实例99:单片机数据发送程序
实例100:电机转速表设计
模拟霍尔脉冲

http://www.dzkfw.com.cn/myxin/51c_language.chm 单片机c语言一百例子

Ⅵ c51单片机程序实例

#include<reg51.h>
#defineucharunsignedchar
uchartab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00};//0到9
ucharnum,cnt,disn;
ucharkeyval,disk;
ucharled[]={1,2,3,4};
voiddealdat(uchara)
{
led[0]=0;
led[1]=0;
led[2]=0;
led[3]=0;
led[a]=disk;
}
voiddelay(unsignedinta)
{
unsignedinti,j;
for(i=0;i<a;i++)
for(j=0;j<1000;j++);
}
voidt0isr()interrupt1
{
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
switch(num)
{
case0:P2=0x01;break;
case1:P2=0x02;break;
case2:P2=0x04;break;
case3:P2=0x08;break;
default:break;
}
P0=~tab[led[num]];
num++;
num&=0x03;
cnt++;
if(cnt>100)
{
cnt=0;
disn++;
disn%=4;
dealdat(disn);
}
}

ucharkbscan(void)
{
unsignedcharsccode,recode;
P3=0x0f;//发0扫描,列线输入
if((P3&0x0f)!=0x0f)//有键按下
{
// delay(20);//延时去抖动
if((P3&0x0f)!=0x0f)
{
sccode=0xef;//逐行扫描初值
while((sccode&0x01)!=0)
{
P3=sccode;
if((P3&0x0f)!=0x0f)
{
recode=(P3&0x0f)|0xf0;
return((~sccode)+(~recode));
}
else
sccode=(sccode<<1)|0x01;
}
}
}
return0;//无键按下,返回0
}

voidgetkey(void)
{
unsignedcharkey;
key=kbscan();
if(key==0){keyval=0xff;return;}
switch(key)
{
case0x11:keyval=7;break;
case0x12:keyval=4;break;
case0x14:keyval=1;break;
case0x18:keyval=10;break;
case0x21:keyval=8;break;
case0x22:keyval=5;break;
case0x24:keyval=2;break;
case0x28:keyval=0;break;
case0x41:keyval=9;break;
case0x42:keyval=6;break;
case0x44:keyval=3;break;
case0x48:keyval=11;break;
case0x81:keyval=12;break;
case0x82:keyval=13;break;
case0x84:keyval=14;break;
case0x88:keyval=15;break;
default:keyval=0xff;break;
}
}

main()
{
TMOD=0x11;
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
TR0=1;
ET0=1;
EA=1;
while(1)
{
getkey();
if(keyval!=0xff)disk=keyval;
delay(10);
}

}

Ⅶ 如何用C51单片机做出以下程序 “秒表是倒计时,从100秒开始倒计时 用数码管实时显示当前计时值”

假设P0 P2接数码管,静态驱动,程序如下:
include<reg52.h>
#define uchar unsigned char
#define uint unsigned int
uchar num=100;
uchar time=0;
//共阴数码管七段码
uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d, 0x07,0x7f,0x6f,0x77};
void Delay1ms(uint i) //1ms延时程序
{
uint j;
for(;i>0;i--)
{
for(j=0;j<164;j++)
{;}
}
}

void main(void )//主程序
{
TMOD=0X01;
ET0=1;
EA=1;
TH0=(65536-50000)/256;//定时50ms
TL0=(65536-50000)%256;
TR0=1;
while(1)
{
P0=table[num/10];
Delay1ms(2);
P2=table[num%10];
Delay1ms(2);
}
}
void TIMER0()interrupt 1//中断程序
{
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
time++;
if(time==20)
{
time=0;
num--;
}
if(num==0)
{
num=100;
}
}

Ⅷ 单片机c语言编程100个实例

51单片机C语言编程实例 基础知识:51单片机编程基础 单片机的外部结构: 1. DIP40双列直插; 2. P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平) 3. 电源VCC(PIN40)和地线GND(PIN20); 4. 高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位) 5. 内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍) 6. 程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序) 7. P3支持第二功能:RXD、TXD、INT0、INT1、T0、T1 单片机内部I/O部件:(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务) 1. 四个8位通用I/O端口,对应引脚P0、P1、P2和P3; 2. 两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1) 3. 一个串行通信接口;(SCON,SBUF) 4. 一个中断控制器;(IE,IP) 针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。 C语言编程基础: 1. 十六进制表示字节0x5a:二进制为01011010B;0x6E为01101110。 2. 如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。 3. ++var表示对变量var先增一;var—表示对变量后减一。 4. x |= 0x0f;表示为 x = x | 0x0f; 5. TMOD = ( TMOD & 0xf0 ) | 0x05;表示给变量TMOD的低四位赋值0x5,而不改变TMOD的高四位。 6. While( 1 ); 表示无限执行该语句,即死循环。语句后的分号表示空循环体,也就是{;} 在某引脚输出高电平的编程方法:(比如P1.3(PIN4)引脚) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P1.3 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P1_3 = 1; //给P1_3赋值1,引脚P1.3就能输出高电平VCC 5. While( 1 ); //死循环,相当 LOOP: goto LOOP; 6. } 注意:P0的每个引脚要输出高电平时,必须外接上拉电阻(如4K7)至VCC电源。 在某引脚输出低电平的编程方法:(比如P2.7引脚) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P2.7 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P2_7 = 0; //给P2_7赋值0,引脚P2.7就能输出低电平GND 5. While( 1 ); //死循环,相当 LOOP: goto LOOP; 6. } 在某引脚输出方波编程方法:(比如P3.1引脚) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P3.1 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 5. { 6. P3_1 = 1; //给P3_1赋值1,引脚P3.1就能输出高电平VCC 7. P3_1 = 0; //给P3_1赋值0,引脚P3.1就能输出低电平GND 8. } //由于一直为真,所以不断输出高、低、高、低……,从而形成方波 9. } 将某引脚的输入电平取反后,从另一个引脚输出:( 比如 P0.4 = NOT( P1.1) ) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P0.4和P1.1 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P1_1 = 1; //初始化。P1.1作为输入,必须输出高电平 5. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 6. { 7. if( P1_1 == 1 ) //读取P1.1,就是认为P1.1为输入,如果P1.1输入高电平VCC 8. { P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND 2 51单片机C语言编程实例 9. else //否则P1.1输入为低电平GND 10. //{ P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND 11. { P0_4 = 1; } //给P0_4赋值1,引脚P0.4就能输出高电平VCC 12. } //由于一直为真,所以不断根据P1.1的输入情况,改变P0.4的输出电平 13. } 将某端口8个引脚输入电平,低四位取反后,从另一个端口8个引脚输出:( 比如 P2 = NOT( P3 ) ) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P2和P3 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P3 = 0xff; //初始化。P3作为输入,必须输出高电平,同时给P3口的8个引脚输出高电平 5. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 6. { //取反的方法是异或1,而不取反的方法则是异或0 7. P2 = P3^0x0f //读取P3,就是认为P3为输入,低四位异或者1,即取反,然后输出 8. } //由于一直为真,所以不断将P3取反输出到P2 9. } 注意:一个字节的8位D7、D6至D0,分别输出到P3.7、P3.6至P3.0,比如P3=0x0f,则P3.7、P3.6、P3.5、P3.4四个引脚都输出低电平,而P3.3、P3.2、P3.1、P3.0四个引脚都输出高电平。同样,输入一个端口P2,即是将P2.7、P2.6至P2.0,读入到一个字节的8位D7、D6至D0。 第一节:单数码管按键显示 单片机最小系统的硬件原理接线图: 1. 接电源:VCC(PIN40)、GND(PIN20)。加接退耦电容0.1uF 2. 接晶体:X1(PIN18)、X2(PIN19)。注意标出晶体频率(选用12MHz),还有辅助电容30pF 3. 接复位:RES(PIN9)。接上电复位电路,以及手动复位电路,分析复位工作原理 4. 接配置:EA(PIN31)。说明原因。 发光二极的控制:单片机I/O输出 将一发光二极管LED的正极(阳极)接P1.1,LED的负极(阴极)接地GND。只要P1.1输出高电平VCC,LED就正向导通(导通时LED上的压降大于1V),有电流流过LED,至发LED发亮。实际上由于P1.1高电平输出电阻为10K,起到输出限流的作用,所以流过LED的电流小于(5V-1V)/10K = 0.4mA。只要P1.1输出低电平GND,实际小于0.3V,LED就不能导通,结果LED不亮。 开关双键的输入:输入先输出高 一个按键KEY_ON接在P1.6与GND之间,另一个按键KEY_OFF接P1.7与GND之间,按KEY_ON后LED亮,按KEY_OFF后LED灭。同时按下LED半亮,LED保持后松开键的状态,即ON亮OFF灭。 代码 1. #include <at89x52.h> 2. #define LED P1^1 //用符号LED代替P1_1 3. #define KEY_ON P1^6 //用符号KEY_ON代替P1_6 4. #define KEY_OFF P1^7 //用符号KEY_OFF代替P1_7 5. void main( void ) //单片机复位后的执行入口,void表示空,无输入参数,无返回值 6. { 7. KEY_ON = 1; //作为输入,首先输出高,接下KEY_ON,P1.6则接地为0,否则输入为1 8. KEY_OFF = 1; //作为输入,首先输出高,接下KEY_OFF,P1.7则接地为0,否则输入为1 9. While( 1 ) //永远为真,所以永远循环执行如下括号内所有语句 10. { 11. if( KEY_ON==0 ) LED=1; //是KEY_ON接下,所示P1.1输出高,LED亮 12. if( KEY_OFF==0 ) LED=0; //是KEY_OFF接下,所示P1.1输出低,LED灭 13. } //松开键后,都不给LED赋值,所以LED保持最后按键状态。 14. //同时按下时,LED不断亮灭,各占一半时间,交替频率很快,由于人眼惯性,看上去为半亮态 15. } 数码管的接法和驱动原理 一支七段数码管实际由8个发光二极管构成,其中7个组形构成数字8的七段笔画,所以称为七段数码管,而余下的1个发光二极管作为小数点。作为习惯,分别给8个发光二极管标上记号:a,b,c,d,e,f,g,h。对应8的顶上一画,按顺时针方向排,中间一画为g,小数点为h。 我们通常又将各二极与一个字节的8位对应,a(D0),b(D1),c(D2),d(D3),e(D4),f(D5),g(D6),h(D7),相应8个发光二极管正好与单片机一个端口Pn的8个引脚连接,这样单片机就可以通过引脚输出高低电平控制8个发光二极的亮与灭,从而显示各种数字和符号;对应字节,引脚接法为:a(Pn.0),b(Pn.1),c(Pn.2),d(Pn.3),e(Pn.4),f(Pn.5),g(Pn.6),h(Pn.7)。 如果将8个发光二极管的负极(阴极)内接在一起,作为数码管的一个引脚,这种数码管则被称为共阴数码管,共同的引脚则称为共阴极,8个正极则为段极。否则,如果是将正极(阳极)内接在一起引出的,则称为共阳数码管,共同的引脚则称为共阳极,8个负极则为段极。 以单支共阴数码管为例,可将段极接到某端口Pn,共阴极接GND,则可编写出对应十六进制码的七段码表字节数据

Ⅸ 单片机C51编程(C语言):1到100的求和显示,在数码管里显示出来.

#include<reg51.h>

#include<stdio.h>

#defineucharunsignedchar

voidconvert();

voiddisplay();

voiddelay();

//共阴:0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

codeunsignedcharLed[16]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,

0x77,0x7C,0x39,0x5E,0x79,0x71};

ucharnum,sw,gw;

voidmain()

{

num=0;

while(1)

{

convert();

display();

delay();

num++;

if(num==100)num=0;

}

}

voidconvert()

{

sw=num/10;

gw=num%10;

}

voiddisplay()

{

P1=Led[gw];

P2=Led[sw];

}

voiddelay()

{

uchari,j,k;

for(k=0;k<2;k++)

for(i=0;i<250;i++)

for(j=0;j<250;j++);

}

使用仿真软件电路连接如下图

阅读全文

与51单片机实例100相关的资料

热点内容
usb供电单片机 浏览:572
解压笔坏了拿什么粘 浏览:11
怎么给pdf文件解密 浏览:138
浙江微乐麻将源码 浏览:275
安卓10月7号复刻什么 浏览:138
hexstring加密 浏览:69
创造捷径显示未指定文件夹 浏览:980
编译和文学的区别 浏览:594
openssl安全加密协议 浏览:477
如何看一款车的好坏app 浏览:935
pic24是什么编译器 浏览:934
预解估计算法怎么回事 浏览:311
压缩空气过滤器等级 浏览:334
算法库STL手册 浏览:700
文件夹照片下载教程 浏览:947
编译原理控制流翻译 浏览:49
华为无线控制器命令 浏览:881
androidh264解码 浏览:886
app如何制作品牌 浏览:49
软考程序员真题word 浏览:377