❶ ADC/SPI/PWM单片机中是什么意思
ADC:模拟数字转换,将模拟余芦电压转换成数字量的外设的名竖前带称
SPI:串行总线,全双工串行总线
PWM:脉悔举冲宽度调制,工程控制脉冲波形
❷ 单片机ADC
ADC可以用在电压/电流测量,或压力传感器的输入,等模拟量的测量
如:电压表,电子称等产品
❸ 单片机ADC和AD
数模转换是通过ADC芯片实现的,单片机将数字信号传送给ADC,比如如果满量程是5V,数值为11111111B,那么送10100111B,经过ADC转换后输出模拟量电压为:
10100111B/11111111B*5=3.2745V
❹ 单片机 请问ADC的基准指的是什么
满量程如果是10位,基准电压如果是5v,假设采样端也是5v,那么得到的数字值是1023
❺ STM32 ADC详解
STM32F1的单片机内部自带12位的ADC处理器,如果12位已经满足了采样要求,那么不用另外接入ADC芯片(这类芯片一般很贵),可以外接的ADC芯片比如ads1256(24位)、AD7689(16位)。
ADC的输入时钟不得超过14MHz,它是由PCLK2经分频产生。转换时最快为1us,当ADC的输入时钟超过14MHz 时其会损失一些精度。也就是说,可以牺牲采样速度来获取采样精度,也可以牺牲采样精度来获取采样速度,当然精度要满足任务要求。
时钟分频:ADC 时钟 ADC 接在APB2 上,APB2的时钟为72MHz,通过分频的方式给ADC 提供时钟,预分频主要有2、4、6、8 四种分频方式。比如,如果打算选择分频6,那么就是ADC采样时钟频率就是72MHz/6=12MHz
转换时间:转换时间TCONV = 采样时间+ 12.5 个周期(12.5个周期采集12位AD时间是固定的周期)
例如:当ADCCLK=14MHz和1.5周期的采样时间
TCONV = 1.5 + 12.5 = 14
周期=1μs
例如:当ADCCLK=14MHz 和1.5 周期的采样时间 TCONV = 1.5 + 12.5 = 14 周期 = 1μs
1)一般情况,如果是软件启动,那么转换时间即是采样周期。
2)若通过定时器进行触发启动ADC,则还需要加上定时器的相关时间。
采样周期:采样周期对于转换时间/采样时钟频率
STM32—ADC详解
STM32的ADC采样时间
❻ 单片机中的ADC是什么意思作用是什么
单片机中的ADC是Analog-to-Digital
Converter的缩写,指模/数转换器或者模数转换器。
ADC是指将连续变化的模拟信号转换为离散的数字信号的器件。真实世界的模拟信号,例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的数字形式。模/数转换器可以实现这个功能,在各种不同的产品中都可以找到它的身影。
典型的模拟数字转换器将模拟信号转换为表示一定比例电压值的数字信号。然而,有一些模拟数字转换器并非纯的电子设备,例如旋转编码器,也可以被视为模拟数字转换器。
(6)赤壁adc单片机扩展阅读:
单片机中ADC的运作原理:
模拟信号在时域上是连续的,因此可以将它转换为时间上连续的一系列数字信号。这样就要求定义一个参数来表示新的数字信号采样自模拟信号速率。这个速率称为转换器的采样率或采样频率。
可以采集连续变化、带宽受限的信号,然后可以通过插值将转换后的离散信号还原为原始信号。这一过程的精确度受量化误差的限制。然而,仅当采样率比信号频率的两倍还高的情况下才可能达到对原始信号的忠实还原,这一规律在采样定理有所体现。
由于实际使用的模拟数字转换器不能进行完全实时的转换,所以对输入信号进行一次转换的过程中必须通过一些外加方法使之保持恒定。
参考资料来源:搜狗网络-ADC(模数转换器)
❼ 单片机控制ADC的常用方法有哪些
1、ADC原理
ADC转换器由前置滤波器、调制器、数字滤波器和梳值滤波器组成,22∃ADC的结构如图1所示.它是将输入信号通过22∃调制器量化成1bit的高速数据流,再经过数字滤波和采样抽取后才得到最后的结果.和传统的AD转换相比,其原理和结构有很大地不同,下面以一阶22∃调制器为例来说明22∃ADC原理.
图1 2-∃ADC的结构
2、常用的方法
ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。
(1)ADC0809的内部逻辑结构
由下图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8 路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数 据。
(2). ADC0809引脚结构
ADC0809各脚功能如下:
D7-D0:8位数字量输出引脚。
IN0-IN7:8位模拟量输入引脚。
VCC:+5V工作电压。
GND:地。
REF(+):参考电压正端。
REF(-):参考电压负端。
START:A/D转换启动信号输入端。
ALE:地址锁存允许信号输入端。
(以上两种信号用于启动A/D转换).
EOC:转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。
OE:输出允许控制端,用以打开三态数据输出锁存器。
CLK:时钟信号输入端(一般为500KHz)。
A、B、C:地址输入线。
ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
地址输入和控制线:4条
ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。通道选择表如下表所示。
数字量输出及控制线:11条
ST为转换启动信号。当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当 EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输 出转换得到的数据;OE=0,输出数据线呈高阻状态。D7-D0为数字量输出线。
CLK为时钟输入信号线。因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,
VREF(+),VREF(-)为参考电压输入。
2. ADC0809应用说明
(1). ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。
(2). 初始化时,使ST和OE信号全为低电平。
(3). 送要转换的哪一通道的地址到A,B,C端口上。
(4). 在ST端给出一个至少有100ns宽的正脉冲信号。
(5). 是否转换完毕,我们根据EOC信号来判断。
(6). 当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了。
3. 实验任务
如下图所示,从ADC0809的通道IN3输入0-5V之间的模拟量,通过ADC0809转换成数字量在数码管上以十进制形成显示出来。ADC0809的VREF接+5V电压。
4. 程序设计内容
(1). 进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。
(2). 进行A/D转换之前,要启动转换的方法:
ABC=110选择第三通道
ST=0,ST=1,ST=0产生启动转换的正脉冲信号 .
C语言源程序
#include
unsigned char code dispbitcode[]={0xfe,0xfd,0xfb,0xf7,
0xef,0xdf,0xbf,0x7f};
unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66,
0x6d,0x7d,0x07,0x7f,0x6f,0x00};
unsigned char dispbuf[8]={10,10,10,10,10,0,0,0};
unsigned char dispcount;
sbit ST="P3"^0;
sbit OE="P3"^1;
sbit EOC="P3"^2;
unsigned char channel="0xbc";//IN3
unsigned char getdata;
void main(void)
{
TMOD=0x01;
TH0=(65536-4000)/256;
TL0=(65536-4000)%256;
TR0=1;
ET0=1;
EA=1;
P3=channel;
while(1)
{
ST=0;
ST=1;
ST=0;
while(EOC==0);
OE=1;
getdata=P0;
OE=0;
dispbuf[2]=getdata/100;
getdata=getdata%10;
dispbuf[1]=getdata/10;
dispbuf[0]=getdata%10;
}
}
void t0(void) interrupt 1 using 0
{
TH0=(65536-4000)/256;
TL0=(65536-4000)%256;
P1=dispcode[dispbuf[dispcount]];
P2=dispbitcode[dispcount];
dispcount++;
if(dispcount==8)
{
dispcount=0;
}