导航:首页 > 操作系统 > 超声波传感器与单片机

超声波传感器与单片机

发布时间:2024-07-15 15:43:45

㈠ CD4049为什么能把单片机输出方波的电压放大并且产生谐振来驱动超声波传感器

CD4049,六反相器。
单片机输出信号先经过一个反相器,分两路,一路过一级反相到超声波超感器1脚,另一路两级反相到2脚。单片机输出高电平时,1脚高电平2脚低电平,反之2高1低。无论单片机输出电平高低,发射器两端都将产生电压,只是电压方向不同而已。所以单片输出方波,在超声波发射器两端就产生了交流电压。

㈡ 51单片机如何控制超声波传感器 求C语言程序(一定要能用)100追加

//超声波模块ME007显示程序
//晶振=8M
//MCU=STC10F04XE
//P0.0-P0.6共阳数码管引脚
//Trig = P1^0
//Echo = P3^2
#include <reg52.h> //包括一个52标准内核的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
//***********************************************
sfr CLK_DIV = 0x97; //为STC单片机定义,系统时钟分频
//为STC单片机的IO口设置地址定义
sfr P0M1 = 0X93;
sfr P0M0 = 0X94;
sfr P1M1 = 0X91;
sfr P1M0 = 0X92;
sfr P2M1 = 0X95;
sfr P2M0 = 0X96;
//***********************************************
sbit Trig = P1^0; //产生脉冲引脚
sbit Echo = P3^2; //回波引脚
sbit test = P1^1; //测试用引脚

uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
//void pai_xu();

void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
CLK_DIV=0X03; //系统时钟为1/8晶振(pdf-45页)
P0M1 = 0; //将io口设置为推挽输出
P1M1 = 0;
P2M1 = 0;
P0M0 = 0XFF;
P1M0 = 0XFF;
P2M0 = 0XFF;
i=0;
flag=0;
test =0;
Trig=0; //首先拉低脉冲输入引脚
TMOD=0x11; //定时器0,定时器1,16位工作方式
TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
ET0=1; //打开定时器0中断
//ET1=1; //打开定时器1中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0

while(1) //程序循环
{
EA=0;
Trig=1;
delay_20us();
Trig=0; //产生一个20us的脉冲,在Trig引脚
while(Echo==0); //等待Echo回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;

while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断

if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零
test = !test; //测试灯变化
}

/// distance[i]=distance_data; //将测量结果的数据放入缓冲区
/// i++;
/// if(i==3)
/// {
/// distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;
/// pai_xu();
/// distance_data=distance[1];

a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
/// i=0;
/// }
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
TH0=0xfd; //写入定时器0初始值
TL0=0x77;
switch(flag)
{case 0x00:P0=ge; P2=0xfd;flag++;break;
case 0x01:P0=shi;P2=0xfe;flag++;break;
case 0x02:P0=;P2=0xfb;flag=0;break;
}
}
//*****************************************************************
/*
//定时器1中断,用做超声波测距计时
timer1() interrupt 3 // 定时器0中断是1号
{
TH1=0;
TL1=0;
}
*/
//******************************************************************
//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;

_data=SEG7[_data];
shi_data=SEG7[shi_data];
ge_data =SEG7[ge_data];

EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************
void delay_20us()
{ uchar bt ;
for(bt=0;bt<100;bt++);
}
/*
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;} /*交换值
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;} /*交换值
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;} /*交换值
}
*/

我的一个超声波程序
有问题,请问~~

//超声波模块显示程序
#include <reg52.h> //包括一个52标准内核的头文件
#include<intrins.h> //包含_nop_()函数定义的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
sbit Tx = P3^3; //产生脉冲引脚
sbit Rx = P3^2; //回波引脚
sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚
sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚
sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚
sbit BF=P0^7; //忙碌标志位,,将BF位定义为P0.7引脚
unsigned char code string[ ]= {"CHAO SHENG BO"};
//unsigned char code string1[ ]={"QUICK STUDY MCU"};
unsigned char code digit[ ]={"0123456789"}; //定义字符数组显示数字
//uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
void pai_xu();

/*****************************************************
函数功能:延时1ms
(3j+2)*i=(3×33+2)×10=1010(微秒),可以认为是1毫秒
***************************************************/
void delay1ms()
{
unsigned char i,j;
for(i=0;i<10;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
void delay(unsigned char n)
{
unsigned char i;
for(i=0;i<n;i++)
delay1ms();
}
/*****************************************************
函数功能:判断液晶模块的忙碌状态
返回值:result。result=1,忙碌;result=0,不忙
***************************************************/
unsigned char BusyTest(void)
{
bit result;
RS=0; //根据规定,RS为低电平,RW为高电平时,可以读状态
RW=1;
E=1; //E=1,才允许读写
_nop_(); //空操作
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
result=BF; //将忙碌标志电平赋给result
E=0; //将E恢复低电平
return result;
}
/*****************************************************
函数功能:将模式设置指令或显示地址写入液晶模块
入口参数:dictate
***************************************************/
void WriteInstruction (unsigned char dictate)
{
while(BusyTest()==1); //如果忙就等待
RS=0; //根据规定,RS和R/W同时为低电平时,可以写入指令
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
_nop_();
_nop_(); //空操作两个机器周期,给硬件反应时间
P0=dictate; //将数据送入P0口,即写入指令或地址
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:指定字符显示的实际地址
入口参数:x
***************************************************/
void WriteAddress(unsigned char x)
{
WriteInstruction(x|0x80); //显示位置的确定方法规定为"80H+地址码x"
}
/*****************************************************
函数功能:将数据(字符的标准ASCII码)写入液晶模块
入口参数:y(为字符常量)
***************************************************/
void WriteData(unsigned char y)
{
while(BusyTest()==1);
RS=1; //RS为高电平,RW为低电平时,可以写入数据
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
P0=y; //将数据送入P0口,即将数据写入液晶模块
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:对LCD的显示模式进行初始化设置
***************************************************/
void LcdInitiate(void)
{
delay(15); //延时15ms,首次写指令时应给LCD一段较长的反应时间
WriteInstruction(0x38); //显示模式设置:16×2显示,5×7点阵,8位数据接口
delay(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x38); //连续三次,确保初始化成功
delay(5);
WriteInstruction(0x0c); //显示模式设置:显示开,无光标,光标不闪烁
delay(5);
WriteInstruction(0x06); //显示模式设置:光标右移,字符不移
delay(5);
WriteInstruction(0x01); //清屏幕指令,将以前的显示内容清除
delay(5);
}

void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
uchar k; //定义变量i指向字符串数组元素
LcdInitiate(); //调用LCD初始化函数
delay(10); //延时10ms,给硬件一点反应时间
WriteAddress(0x01); // 从第1行第3列开始显示
k = 0; //指向字符数组的第1个元素
while(string[k] != '\0')
{
WriteData(string[k]);
k++; //指向下字符数组一个元素
}
i=0;

flag=0;
Tx=0; //首先拉低脉冲输入引脚
TMOD=0x10; //定时器0,定时器1,16位工作方式
// TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
//ET0=1; //打开定时器0中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0

while(1) //程序循环
{
WriteAddress(0x41); // 从第2行第6列开始显示
WriteData('J'); //将万位数字的字符常量写入LCD
WriteData('U'); //将万位数字的字符常量写入LCD
WriteData('L'); //将万位数字的字符常量写入LCD
WriteData('I'); //将万位数字的字符常量写入LCD
WriteData(':'); //将万位数字的字符常量写入LCD
WriteData(digit[]); //将万位数字的字符常量写入LCD
WriteData(digit[shi]); //将千位数字的字符常量写入LCD
WriteData('.'); //将万位数字的字符常量写入LCD
WriteData(digit[ge]); //将百位数字的字符常量写入LCD
WriteData(' '); //将百位数字的字符常量写入LCD
WriteData('C'); //将万位数字的字符常量写入LCD
WriteData('M'); //将万位数字的字符常量写入LCD
EA=0;
Tx=1;
delay_20us();
Tx=0; //产生一个20us的脉冲,在Tx引脚
while(Rx==0); //等待Rx回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;

while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断

if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零

}

distance[i]=distance_data; //将测量结果的数据放入缓冲区
i++;
if(i==3)
{
distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;

pai_xu();
distance_data=distance[1];

a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
i=0;
}
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
// TH0=0xfd; //写入定时器0初始值
// TL0=0x77;

}

//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;

//_data=SEG7[_data];
//shi_data=SEG7[shi_data]&0x7f;
//ge_data =SEG7[ge_data];

EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************

void delay_20us()
{ uchar bt ;
for(bt=0;bt<60;bt++);
}
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;}
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;}
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;}
}

第一个需要修改,你还是试试这个吧!这个你先理解下,修改引脚……显示为1602

㈢ 您好,如果想用单片机驱动超声波传感器,驱动电路选择什么好

用单片机驱动一个开关管。
在初级阶段,建议用NPN达林顿三极管,例如TIP142之类,电路比较简单:在NPN达林顿管的集电极与电源之间,接一个脉冲变压器(初级)。脉冲变压器的次级接超声波的发射头。用于驱动的电源电压不要太高,也尽量别用5V的单片机电源,建议用5V-12V的独立电源供电,与单片机共地。
以上实验成功以后,还需要进一步增加一些原件,用来提高电路的稳定性、可靠性,并减少余震,当然那是后话了,一步一步来吧。

㈣ 基于单片机的超声波测距仪毕业论文

相关范文:

基于单片机的超声波测距仪设计及其应用分析

[摘要] 本文利用超声波传输中距离与时间的关系,采用AT89C51单片机进行控制及数据处理,设计出了能精确测量两点间距离的超声波测距仪。该测距仪主要由超声波发射器电路、超声波接收器电路、单片机控制电路、环境温度检测电路及显示电路构成。利用所设计出的超声波测距仪,对不同距离进行了测试,并进行了详尽的误差分析。

[关键词] 超声波测距 单片机 温度传感器

随着社会的发展,人们对距离或长度测量的要求越来越高。超声波测距由于其能进行非接触测量和相对较高的精度,越来越被人们所重视。本设计的超声波测距仪,可以对不同距离进行测试,并可以进行详尽的误差分析。

一、设计原理

超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。 通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C
式中 L——要测的距离
T——发射波和反射波之间的时间间隔
C——超声波在空气中的声速,常温下取为340m/s
声速确定后,只要测出超声波往返的时间,即可求得L。

二、超声波测距仪设计目标

测量距离: 5米的范围之内;通过LED能够正确显示出两点间的距离;误差小于5%。

三、数据测量和分析

1.数据测量与分析
由于实际测量工作的局限性,最后在测量中选取了一米以下的30cm、50cm、70cm、80cm、90cm、100cm 六个距离进行测量,每个距离连续测量七次,得出测量数据(温度:29℃),如表所示。从表中的数据可以看出,测量值一般都比实际值要大几厘米,但对于连续测量的准确性还是比较高的。
对所测的每组数据去掉一个最大值和最小值,再求其平均值,用来作为最终的测量数据,最后进行比较分析。这样处理数据也具有一定的科学性和合理性。从表中的数据来看,虽然对超声波进行了温度补偿,但在比较近的距离的测量中其相对误差也比较大。特别是对30cm和50cm的距离测量上,相对误差分别达到了5%和4.8%。但从全部测量结果看,本设计的绝对误差都比较小,也比较稳定。本设计盲区在22.6cm左右,基本满足设计要求。
2.误差分析
测距误差主要来源于以下几个方面:
(1)超声波发射与接收探头与被测点存在一定的角度,这个角度直接影响到测量距离的精确值;(2)超声波回波声强与待测距离的远近有直接关系,所以实际测量时,不一定是第一个回波的过零点触发;(3)由于工具简陋,实际测量距离也有误差。影响测量误差的因素很多,还包括现场环境干扰、时基脉冲频率等等。

四、应用分析

采用超声波测量大气中的地面距离,是近代电子技术发展才获得正式应用的技术,由于超声测距是一种非接触检测技术,不受光线、被测对象颜色等的影响,在较恶劣的环境(如含粉尘)具有一定的适应能力。因此,用途极度广泛。例如:测绘地形图,建造房屋、桥梁、道路、开挖矿山、油井等,利用超声波测量地面距离的方法,是利用光电技术实现的,超声测距仪的优点是:仪器造价比光波测距仪低,省力、操作方便。
超声测距仪在先进的机器人技术上也有应用,把超声波源安装在机器人身上,由它不断向周围发射超声波并且同时接收由障碍物反射回波来确定机器人的自身位置,用它作为传感器控制机器人的电脑等等。由于超声波易于定向发射,方向性好,强度好控制,它的应用价值己被普遍重视。
总之,由以上分析可看出:利用超声波测距,在许多方面有很多优势。因此,本课题的研究是非常有实用和商业价值。

五、结论

本设计的测量距离符合市场要求,测量的盲区也控制在23cm以内。针对市场需求,本设计还可以加大发射功率,让测量的距离更加的远。在显示方面,也可以对程序做适当改动,使开始发射超声波时LED显示出温度值,到超声波回波接收到以后通过计算得出距离值时,LED自动切换显示距离值,这样在视觉效果上得到更加直观的了解。

参考文献:

[1]孙涵芳徐爱卿:MCS一51/96系列单片机原理及应用(修订版)[M].北京:北京航空航天大学出版社.2002.46-170
[2]金篆芷王明时:现代传感器技术[M].电子工业出版社.1995.331—335
[3]孙涵芳徐爱卿:MCS一51/96系列单片机原理及应用(修订版)[M].北京:北京航空航天大学出版社.2002.46-170
[4]路锦正王建勤杨绍国赵珂赵太飞:超声波测距仪的设计[J].传感器技术.2002

仅供参考,请自借鉴

希望对您有帮助

㈤ 使用超声波传感器HY-SRF05时,VCC端接在STM32F103C8T6单片机的5V引脚

STM32F103的电源是3.3V的,而一般这个3.3V的电源都是从5V电源得来的;
如果你板上没有5V电源,如是直接从锂电池供电的,只需要加个小小的电源转换模块,3.3-->5V,便可得到5V电源,而传感器的耗电很小容易满足;

㈥ 超声波传感器测距,直接把传感器与单片机连接行不

如果你买的是带输出的模拟信号或者数字信号输出的传感器是可以的,不过大部分说的传感器,是一个超声波换能器,是不可以的,要增加发射接收电路才行.你说的几块钱一个的传感器,其实是倒车雷达或者民用的测距传感器,这种就是一个超声波换能器.是很便宜.

㈦ 单片机如何接收超声波传感器的信号

单片机和超声换能器之间,应该是有发射电路和小信号放大电路。单片机控制发射电路发射,小信号放大电路接收到超声换能器的信号,进行放大后接入单片机。至于要怎么采集,采集的时间,要看你具体要实现的功能。

阅读全文

与超声波传感器与单片机相关的资料

热点内容
ie9文件夹怎么查看ftp 浏览:62
唯品会python解密 浏览:852
安卓高拍仪有什么用 浏览:241
同步盘用什么app好 浏览:188
服务器上下载是什么意思 浏览:169
s6怎么接电话加密 浏览:152
电脑的命令指令符打不开怎么办 浏览:535
可编程逻辑器件cpld开发板 浏览:888
加装文件夹图片 浏览:425
27岁程序员offer 浏览:619
中国建筑史梁思成pdf 浏览:198
单片机双核与单核区别 浏览:850
xss攻击需要编译的符号 浏览:140
南京单片机寻址 浏览:897
自制西门子编程电缆 浏览:807
服务器还叫什么名 浏览:712
空气压缩机阿特拉斯 浏览:906
数控加工螺纹零件图及编程 浏览:402
和平精英安卓怎么改90帧 浏览:306
程序员写的诗 浏览:230