#include<reg52.h> //包含单片机寄存器的头文件
#include<intrins.h> //包含_nop_()函数定义的头文件
sbit IR=P3^2; //将IR位定义为P3.2引脚
sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚
sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚
sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚
sbit BF=P0^7; //忙碌标志位,,将BF位定义为P0.7引脚
sbit BEEP = P3^6; //蜂鸣器控制端口P36
unsigned char flag;
unsigned char code string[ ]= {"1602IR-CODE TEST"};
unsigned char a[4]; //储存用户码、用户反码与键数据码、键数据反码
unsigned int LowTime,HighTime; //储存高、低电平的宽度
/*****************************************************
函数功能:延时1ms
***************************************************/
void delay1ms()
{
unsigned char i,j;
for(i=0;i<10;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
void delay(unsigned char n)
{
unsigned char i;
for(i=0;i<n;i++)
delay1ms();
}
/*********************************************************/
void beep() //蜂鸣器响一声函数
{
unsigned char i;
for (i=0;i<100;i++)
{
delay1ms();
BEEP=!BEEP; //BEEP取反
}
BEEP=1; //关闭蜂鸣器
delay(250); //延时
}
/*****************************************************
函数功能:判断液晶模块的忙碌状态
返回值:result。result=1,忙碌;result=0,不忙
***************************************************/
unsigned char BusyTest(void)
{
bit result;
RS=0; //根据规定,RS为低电平,RW为高电平时,可以读状态
RW=1;
E=1; //E=1,才允许读写
_nop_(); //空操作
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
result=BF; //将忙碌标志电平赋给result
E=0;
return result;
}
/*****************************************************
函数功能:将模式设置指令或显示地址写入液晶模块
入口参数:dictate
***************************************************/
void WriteInstruction (unsigned char dictate)
{
while(BusyTest()==1); //如果忙就等待
RS=0; //根据规定,RS和R/W同时为低电平时,可以写入指令
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
_nop_();
_nop_(); //空操作两个机器周期,给硬件反应时间
P0=dictate; //将数据送入P0口,即写入指令或地址
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:指定字符显示的实际地址
入口参数:x
***************************************************/
void WriteAddress(unsigned char x)
{
WriteInstruction(x|0x80); //显示位置的确定方法规定为"80H+地址码x"
}
/*****************************************************
函数功能:将数据(字符的标准ASCII码)写入液晶模块
入口参数:y(为字符常量)
***************************************************/
void WriteData(unsigned char y)
{
while(BusyTest()==1);
RS=1; //RS为高电平,RW为低电平时,可以写入数据
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
P0=y; //将数据送入P0口,即将数据写入液晶模块
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:对LCD的显示模式进行初始化设置
***************************************************/
void LcdInitiate(void)
{
delay(15); //延时15ms,首次写指令时应给LCD一段较长的反应时间
WriteInstruction(0x38); //显示模式设置:16×2显示,5×7点阵,8位数据接口
delay(5); //延时5ms
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x0C); //显示模式设置:显示开,有光标,光标闪烁
delay(5);
WriteInstruction(0x06); //显示模式设置:光标右移,字符不移
delay(5);
WriteInstruction(0x01); //清屏幕指令,将以前的显示内容清除
delay(5);
}
/************************************************************
函数功能:对4个字节的用户码和键数据码进行解码
说明:解码正确,返回1,否则返回0
出口参数:dat
*************************************************************/
bit DeCode(void)
{
unsigned char i,j;
unsigned char temp; //储存解码出的数据
for(i=0;i<4;i++) //连续读取4个用户码和键数据码
{
for(j=0;j<8;j++) //每个码有8位数字
{
temp=temp>>1; //temp中的各数据位右移一位,因为先读出的是高位数据
TH0=0; //定时器清0
TL0=0; //定时器清0
TR0=1; //开启定时器T0
while(IR==0) //如果是低电平就等待
; //低电平计时
TR0=0; //关闭定时器T0
LowTime=TH0*256+TL0; //保存低电平宽度
TH0=0; //定时器清0
TL0=0; //定时器清0
TR0=1; //开启定时器T0
while(IR==1) //如果是高电平就等待
;
TR0=0; //关闭定时器T0
HighTime=TH0*256+TL0; //保存高电平宽度
if((LowTime<370)||(LowTime>640))
return 0; //如果低电平长度不在合理范围,则认为出错,停止解码
if((HighTime>420)&&(HighTime<620)) //如果高电平时间在560微秒左右,即计数560/1.085=516次
temp=temp&0x7f; //(520-100=420, 520+100=620),则该位是0
if((HighTime>1300)&&(HighTime<1800)) //如果高电平时间在1680微秒左右,即计数1680/1.085=1548次
temp=temp|0x80; //(1550-250=1300,1550+250=1800),则该位是1
}
a[i]=temp; //将解码出的字节值储存在a[i]
}
if(a[2]=~a[3]) //验证键数据码和其反码是否相等,一般情况下不必验证用户码
return 1; //解码正确,返回1
}
/*------------------二进制码转换为压缩型BCD码,并显示---------------*/
void two_2_bcd(unsigned char date)
{
unsigned char temp;
temp=date;
date&=0xf0;
date>>=4; //右移四位得到高四位码
date&=0x0f; //与0x0f想与确保高四位为0
if(date<=0x09)
{
WriteData(0x30+date); //lcd显示键值高四位
}
else
{
date=date-0x09;
WriteData(0x40+date);
}
date=temp;
date&=0x0f;
if(date<=0x09)
{
WriteData(0x30+date); //lcd显示低四位值
}
else
{
date=date-0x09;
WriteData(0x40+date);
}
WriteData(0x48); //显示字符'H'
}
/************************************************************
函数功能:1602LCD显示
*************************************************************/
void Disp(void)
{
WriteAddress(0x40); // 设置显示位置为第一行的第1个字
two_2_bcd(a[0]);
WriteData(0x20);
two_2_bcd(a[1]);
WriteData(0x20);
two_2_bcd(a[2]);
WriteData(0x20);
two_2_bcd(a[3]);
}
/************************************************************
函数功能:主函数
*************************************************************/
void main()
{
unsigned char i;
LcdInitiate(); //调用LCD初始化函数
delay(10);
WriteInstruction(0x01);//清显示:清屏幕指令
WriteAddress(0x00); // 设置显示位置为第一行的第1个字
i = 0;
while(string[i] != '\0') //'\0'是数组结束标志
{ // 显示字符 www.RICHMCU.COM
WriteData(string[i]);
i++;
}
EA=1; //开启总中断
EX0=1; //开外中断0
ET0=1; //定时器T0中断允许
IT0=1; //外中断的下降沿触发
TMOD=0x01; //使用定时器T0的模式1
TR0=0; //定时器T0关闭
while(1); //等待红外信号产生的中断
}
/************************************************************
函数功能:红外线触发的外中断处理函数
*************************************************************/
void Int0(void) interrupt 0
{
EX0=0; //关闭外中断0,不再接收二次红外信号的中断,只解码当前红外信号
TH0=0; //定时器T0的高8位清0
TL0=0; //定时器T0的低8位清0
TR0=1; //开启定时器T0
while(IR==0); //如果是低电平就等待,给引导码低电平计时
TR0=0; //关闭定时器T0
LowTime=TH0*256+TL0; //保存低电平时间
TH0=0; //定时器T0的高8位清0
TL0=0; //定时器T0的低8位清0
TR0=1; //开启定时器T0
while(IR==1); //如果是高电平就等待,给引导码高电平计时
TR0=0; //关闭定时器T0
HighTime=TH0*256+TL0; //保存引导码的高电平长度
if((LowTime>7800)&&(LowTime<8800)&&(HighTime>3600)&&(HighTime<4700))
{
//如果是引导码,就开始解码,否则放弃,引导码的低电平计时
//次数=9000us/1.085=8294, 判断区间:8300-500=7800,8300+500=8800.
if(DeCode()==1) // 执行遥控解码功能
{
Disp();//调用1602LCD显示函数
beep();//蜂鸣器响一声 提示解码成功
}
}
EX0=1; //开启外中断EX0
}
⑵ 51单片机红外遥控和按键怎么连接
1、首先通过4个按键,可以直接按下触发红外线编码。
2、其次发射出的红外线与红外线遥控器相同。
3、最后接通电源,系统进入工作状态,等待接收命令即可。
⑶ 用单片机如何作红外线的接收
你好,我研究过红外线,网上有卖红外一体化接收头的,大概8毛钱一个,它有三个引脚,分别是电源、地、还有信号端。信号端接单片机外部中断0或外部中断1,我编过相应的程序,用红外遥控控制数码管的显示,按几号键显示几。
⑷ 红外发射与接收的工作原理是什么
按一定的振荡频率供电红外光发射管,接收红外光管的振荡频率与发射的频率相同,在有效发射、接收角度及无障碍距离就能接收到红外光工作。
⑸ 求单片机C51红外线收发方案(最好有详细解释)
红外线遥控器解码程序
2007-02-07 18:52 红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。现在工业设备中,也已经广泛在使用。。。。。
1 红外遥控系统
通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。
2 遥控发射器及其编码
遥控发射器专用芯片很多,根据编码格式可以分成脉冲宽度调制和脉冲相位调制两大类,这里我们以运用比较广泛,解码比较容易的脉冲宽度调制来加以说明,现以3310组成发射电路为例说明编码原理。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征:
采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”
上述“0”和“1”组成的42位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,
3310产生的遥控编码是连续的42位二进制码组,其中前26位为用户识别码,能区别不同的红外遥控设备,防止不同机种遥控码互相干扰。后16位为8位的操作码和8位的操作反码用于核对数据是否接收准确。
当遥控器上任意一个按键按下超过36ms时,LC7461芯片的振荡器使芯片激活,将发射一个特定的同步码头,对于接收端而言就是一个9ms的低电平,和一个4.5ms的高电平,这个同步码头可以使程序知道从这个同步码头以后可以开始接收数据。
解码的关键是如何识别“0”和“1”,从位的定义我们可以发现“0”、“1”均以0.56ms的低电平开始,不同的是高电平的宽度不同,“0”为0.56ms,“1”为1.68ms,所以必须根据高电平的宽度区别“0”和“1”。如果从0.56ms低电平过后,开始延时,0.56ms以后,若读到的电平为低,说明该位为“0”,反之则为“1”,为了可靠起见,延时必须比0.56ms长些,但又不能超过1.12ms,否则如果该位为“0”,读到的已是下一位的高电平,因此取(1.12ms+0.56ms)/2=0.84ms最为可靠,一般取0.84ms左右即可。
根据红外编码的格式,程序应该等待9ms的起始码和4.5ms的结果码完成后才能读码。
接收器及解码
LT0038是塑封一体化红外线接收器,它是一种集红外线接收、放大、整形于一体的集成电路,不需要任何外接元件,就能完成从红外线接收到输出与TTL电平信号兼容的所有工作,没有红外遥控信号时为高电平,收到红外信号时为低电平,而体积和普通的塑封三极管大小一样,它适合于各种红外线遥控和红外线数据传输。
下面是一个对51ISP编程实验开发板配套的红外线遥控器的解码程序,它可以把红外遥控器每一个按键的键值读出来,并且通过实验板上P1口的8个LED显示出来,在解码成功的同时并且能发出“嘀嘀嘀”的提示音。
ORG 0000H
AJMP MAIN;转入主程序
ORG 0003H ;外部中断P3.2脚INT0入口地址
AJMP INT ;转入外部中断服务子程序(解码程序)
;以下为主程序进行CPU中断方式设置
MAIN:SETB EA ;打开CPU总中断请求
SETB IT0 ;设定INT0的触发方式为脉冲负边沿触发
SETB EX0 ;打开INT0中断请求
;以下对单片机的所有引脚进行初始化,全部设置成高电平
MOV P2,#11111111B
AJMP $
;以下为进入P3.2脚外部中断子程序,也就是解码程序
INT: CLR EA ;暂时关闭CPU的所有中断请求
MOV R6,#10
SB: ACALL YS1;调用882微秒延时子程序
JB P3.2,EXIT;延时882微秒后判断P3.2脚是否出现高电平如果有就退出解码程序
DJNZ R6, SB;重复10次,目的是检测在8820微秒内如果出现高电平就退出解码程序
;以上完成对遥控信号的9000微秒的初始低电平信号的识别。
JNB P3.2, $ ;等待高电平避开9毫秒低电平引导脉冲
ACALL YS2 ;延时4.74毫秒避开4.5毫秒的结果码
MOV R7,#26;忽略前26位系统识别码
JJJJA:JNB P3.2,$;等待地址码第一位的高电平信号
LCALL YS1;高电平开始后用882微秒的时间尺去判断信号此时的高低电平状态
MOV C,P3.2;将P3.2引脚此时的电平状态0或1存入C中
JNC UUUA;如果为0就跳转到UUUA
LCALL YS3;检测到高电平1的话延时1毫秒等待脉冲高电平结束
UUUA: DJNZ R7,JJJJA
MOV R1,#1AH ;设定1AH为起始RAM区
MOV R2,#2;接收从1AH到1BH的2个内存,用于存放操作码和操作反码
PP: MOV R3,#8;每组数据为8位
JJJJ: JNB P3.2,$;等待地址码第一位的高电平信号
LCALL YS1;高电平开始后用882微秒的时间尺去判断信号此时的高低电平状态
MOV C,P3.2;将P3.2引脚此时的电平状态0或1存入C中
JNC UUU;如果为0就跳转到UUU
LCALL YS3;检测到高电平1的话延时1毫秒等待脉冲高电平结束
UUU: MOV A,@R1;将R1中地址的给A
RRC A;将C中的值0或1移入A中的最低位
MOV @R1,A;将A中的数暂时存放在R1数值的内存中
DJNZ R3,JJJJ;接收满8位换一个内存
INC R1;对R1中的值加1,换下一个RAM
DJNZ R2,PP ;接收完8位数据码和8位数据反码,存放在1AH/1BH中
MOV A,1AH
CPL A;对1AH取反后和1BH比较
CJNE A,1BH,EXIT;如果不等表示接收数据发生错误,放弃
MOV P1,1AH;将按键的键值通过P1口的8个LED显示出来!
CLR P2.0;蜂鸣器鸣响-嘀嘀嘀-的声音,表示解码成功
LCALL YS2
LCALL YS2
LCALL YS2
SETB P2.0;蜂鸣器停止(使用时可以将J2的YINYUE脚用跳线接J4 的XS1脚才可以使用蜂鸣器)可以看原理图
EXIT: SETB EA ;允许中断
RETI ;退出解码子程序
YS1: MOV R4,#20 ;延时子程序1,精确延时882微秒
D1: MOV R5,#20
DJNZ R5,$
DJNZ R4,D1
RET
YS2: MOV R4,#10 ;延时子程序2,精确延时4740微秒
D2: MOV R5,#235
DJNZ R5,$
DJNZ R4,D2
RET
YS3: MOV R4,#2;延时程序3,精确延时1000微秒
D3:MOV R5,#248
DJNZ R5,$
DJNZ R4,D3
RET
END
以上程序紧供参考。
0A 01
11 12 13 14
15 16 17 18
19 10 1A 1B
0E 02 03 1C
06 04 05 0C
0D 08 09 1D
00 1F 1E 0B
07 0F
这是按照红外遥控器按键的实际位置给出的32个按键的键值(16进制)