❶ linux:谁能给我解释下虚拟地址和物理地址的联系
这个问题很大。。。。我尽自己所能给你解释一下吧,如果你不能完全看懂,以后可以回头再翻翻来看。关于虚拟内存的事情,大概是这样的:
首先你要明确什么是虚拟内存。虚拟内存实际上是操作系统对于内存管理的一种方式,比如说,对每个程序而言,它的内存编址都从0x00到0xff,但是实际上,这些内存对应的物理地址,应用程序本身是无法知道的,在这里就可以理解成操作系统对内存管理的一层抽象。
比如,可能进程init的虚拟地址0x00对应了物理地址的0x10,而kthreadd的虚拟地址0x00对应物理地址0x20,etc.
而且虚拟内存也是一种有效的进程间隔离的方式,极大的提升了进程的安全性和操作系统的稳定性,也就是我一个进程不管做什么,都是在它自己的地址空间里做的,不会影响到其他进程和OS。
当然这是理想情况,实际上还有进程间通信啦之类,这就不在这个问题的范围之内了。
而具体怎么把这些虚拟地址对应到物理地址上,这是操作系统做的事情,估计这个也就是你的问题。
----以上是背景1-----
然后我要明确一下:地址总线4位的意思是说内存用4个bit位来表达地址,所以能够index的地址位就是2^0-2^4,也就是0x0到0xf,就是16个bit的内存空间。
然后我们再来细化一下你的例子,就比方说在你的16bit的内存的机器上有1个OS,上面跑着2个程序。一般来说OS会保留地址的高位,比如11-15bit的位置,作为kernel space;然后0-10bit是user space。
在以上的前提下,虚拟内存的效果是:在每一个程序看来,这个程序都有0x0到0xf的地址可以用,并且它们的0xb-0xf都是shared kernel space,然后0x0-0xa都是自己的user space,这样仿佛就有了32个bit的地址一样。这就是你所谓的是用虚拟地址可以使总的地址操作物理地址。至于os是怎么做到这点的,继续往下看。
-----以上是背景2-----
操作系统对每一个进程有一个进程控制块,叫PCB,Process Control Block,里边存储了每一个进程的进程信息,比如说寄存器,file descriptor,还有我们最关心的内存映射信息。每一个进程有一个递增的id号,叫pid,也就是Process IDentifier.
-----以上是背景3-----
进程间切换,也就是说,比如说你一个系统只有1个CPU,但是有两个进程要跑,而且要让我们看起来好像是两个进程同时在跑一样。为什么我要提到这个呢,后面继续看。
-----以上是背景4-----
好,现在来讲如何把虚拟地址映射到物理地址。从程序的角度来看,从malloc开始讲起,比如,在某一时刻,一个进程调用了malloc,在堆(heap)上申请了2bits的空间。实际上这个行为的流程是,程序调用malloc,进入内核模式之后,调用mmap,如果成功,操作系统会从物理地址上取一块2bits的内存,交给应用程序编入虚拟地址空间。更详细一点说,每个进程对内存管理是一个红黑树的结构,也就是说,在每一个进程的PCB,里维护了一颗红黑树,然后动态的将所有的新分配的内存加到这个红黑树里边,以保证程序对每一块内存的访问时间是差不多的。然后不知道你们教材中有没有提到页表(page table),页表也是PCB中的一项,你们教材中应该会对页表有详细的讲解,将如何对内存的地址进行换算,之类的。然后你要明确,页表实际上是红黑树的cache,这样可以加速程序对于常用的内存的访问速度。
以上是操作系统对内存管理的一个大致概括,就是一块物理的内存如何映射成为一块虚拟的内存。
我在背景2中说,两个程序都看到自己有16个bit的虚拟地址,总共有32bit,但是实际上硬件只有16bits,也就是说,不管你在红黑树和页表中怎么映射,一定会有冲突发生,比如,可能物理地址的0x02对应了进程1中的0x04,又在进程2的PCB中映射到了pid2的虚拟地址位0x06上。操作系统如何解决这个矛盾呢,首先在进程pid 1运行的时候,这个0x02对应的是pid1中的0x04;然后这个时候进程切换发生了,pid 2开始运行。当pid2需要用到它的0x04时,os发现0x02这个地址在pid1中也有映射,于是它就把0x02这个地址上的内容存到硬盘上的一个叫swap的空间内,然后把这个地址交给pid2使用。这样就达到了扩大虚拟地址的效果。
但是这样做是有代价的,因为一旦这个page被swap出去,那么在pid1再来调用的时候会发生一系列的miss,从L1 cache miss到 L2 cache miss到L3 cache miss,然后页表miss,memory miss,会对程序的性能造成极大的影响。影响有多大呢,平均来说:
L1 cache hit: 0.5ns
L2 cache hit: 7ns
主内存引用:100ns
顺序从内存中读取1MB:250,000ns
硬盘寻道:10,000,000ns
从硬盘上顺序读取1MB:30,000,000ns
所以你就可以知道这种行为是以极大的性能为代价的。
----讲完啦-----
总的来说这个很大的话题,我刚才所写的东西的就是试图让你对虚拟内存这个东西有一个基本的概念,然后大致的了解内存是如何映射的。就我现在能想到的,对这个虚拟内存话题的讨论还包括多级页表,进程间隔离&通信以及memory fragment。
个人水平有限,如果以上有什么地方说错的或者遗漏的,还请各位多多补充和批评,谢谢。
❷ Linux Kernel 2.4 和 2.6 的区别
1、 使用新的入口
必须包含 <linux/init.h>
mole_init(your_init_func);
mole_exit(your_exit_func);
老版本:int init_mole(void);
void cleanup_mole(voi);
2.4中两种都可以用,对如后面的入口函数不必要显示包含任何头文件。
2、 GPL
MODULE_LICENSE("Dual BSD/GPL");
老版本:MODULE_LICENSE("GPL");
3、 模块参数
必须显式包含<linux/moleparam.h>
mole_param(name, type, perm);
mole_param_named(name, value, type, perm);
参数定义
mole_param_string(name, string, len, perm);
mole_param_array(name, type, num, perm);
老版本:MODULE_PARM(variable,type);
MODULE_PARM_DESC(variable,type);
4、 模块别名
MODULE_ALIAS("alias-name");
这是新增的,在老版本中需在/etc/moles.conf配置,现在在代码中就可以实现。
5、 模块计数
int try_mole_get(&mole);
mole_put();
老版本:MOD_INC_USE_COUNT 和 MOD_DEC_USE_COUNT
6、 符号导出
只有显示的导出符号才能被其他 模块使用,默认不导出所有的符号,不必使用EXPORT_NO
_SYMBOLS
老板本:默认导出所有的符号,除非使用EXPORT_NO_SYMBOLS
7、 内核版本检查
需要在多个文件中包含<linux/mole.h>时,不必定义__NO_VERSION__
老版本:在多个文件中包含<linux/mole.h>时,除在主文件外的其他文件中必须定义_
_NO_VERSION__,防止版本重复定义。
8、 设备号
kdev_t被废除不可用,新的dev_t拓展到了32位,12位主设备号,20位次设备号。
unsigned int iminor(struct inode *inode);
unsigned int imajor(struct inode *inode);
老版本:8位主设备号,8位次设备号
int MAJOR(kdev_t dev);
int MINOR(kdev_t dev);
9、 内存分配头文件变更
所有的内存分配函数包含在头文件<linux/slab.h>,而原来的<linux/malloc.h>不存在
老版本:内存分配函数包含在头文件<linux/malloc.h>
10、 结构体的初试化
gcc开始采用ANSI C的struct结构体的初始化形式:
static struct some_structure = {
.field1 = value,
.field2 = value,
..
};
老版本:非标准的初试化形式
static struct some_structure = {
field1: value,
field2: value,
..
};
11、 用户模式帮助器
int call_usermodehelper(char *path, char **argv, char **envp,
int wait);
新增wait参数
12、 request_mole()
request_mole("foo-device-%d", number);
老版本:
char mole_name[32];
printf(mole_name, "foo-device-%d", number);
request_mole(mole_name);
13、 dev_t引发的字符设备的变化
1、取主次设备号为
unsigned iminor(struct inode *inode);
unsigned imajor(struct inode *inode);
2、老的register_chrdev()用法没变,保持向后兼容,但不能访问设备号大于256的设备
。
3、新的接口为
a)注册字符设备范围
int register_chrdev_region(dev_t from, unsigned count, char *name);
b)动态申请主设备号
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, char
*name);
看了这两个函数郁闷吧^_^!怎么和file_operations结构联系起来啊?别急!
c)包含 <linux/cdev.h>,利用struct cdev和file_operations连接
struct cdev *cdev_alloc(void);
void cdev_init(struct cdev *cdev, struct file_operations *fops);
int cdev_add(struct cdev *cdev, dev_t dev, unsigned count);
(分别为,申请cdev结构,和fops连接,将设备加入到系统中!好复杂啊!)
d)void cdev_del(struct cdev *cdev);
只有在cdev_add执行成功才可运行。
e)辅助函数
kobject_put(&cdev->kobj);
struct kobject *cdev_get(struct cdev *cdev);
void cdev_put(struct cdev *cdev);
这一部分变化和新增的/sys/dev有一定的关联。
14、 新增对/proc的访问操作
<linux/seq_file.h>
以前的/proc中只能得到string, seq_file操作能得到如long等多种数据。
相关函数:
static struct seq_operations 必须实现这个类似file_operations得数据中得各个成
员函数。
seq_printf();
int seq_putc(struct seq_file *m, char c);
int seq_puts(struct seq_file *m, const char *s);
int seq_escape(struct seq_file *m, const char *s, const char *esc);
int seq_path(struct seq_file *m, struct vfsmount *mnt,
struct dentry *dentry, char *esc);
seq_open(file, &ct_seq_ops);
等等
15、 底层内存分配
1、<linux/malloc.h>头文件改为<linux/slab.h>
2、分配标志GFP_BUFFER被取消,取而代之的是GFP_NOIO 和 GFP_NOFS
3、新增__GFP_REPEAT,__GFP_NOFAIL,__GFP_NORETRY分配标志
4、页面分配函数alloc_pages(),get_free_page()被包含在<linux/gfp.h>中
5、对NUMA系统新增了几个函数:
a) struct page *alloc_pages_node(int node_id,
unsigned int gfp_mask,
unsigned int order);
b) void free_hot_page(struct page *page);
c) void free_cold_page(struct page *page);
6、 新增Memory pools
<linux/mempool.h>
mempool_t *mempool_create(int min_nr,
mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn,
void *pool_data);
void *mempool_alloc(mempool_t *pool, int gfp_mask);
void mempool_free(void *element, mempool_t *pool);
int mempool_resize(mempool_t *pool, int new_min_nr, int gfp_mask);
16、 per-CPU变量
get_cpu_var();
put_cpu_var();
void *alloc_percpu(type);
void free_percpu(const void *);
per_cpu_ptr(void *ptr, int cpu)
get_cpu_ptr(ptr)
put_cpu_ptr(ptr)
老版本使用
DEFINE_PER_CPU(type, name);
EXPORT_PER_CPU_SYMBOL(name);
EXPORT_PER_CPU_SYMBOL_GPL(name);
DECLARE_PER_CPU(type, name);
DEFINE_PER_CPU(int, mypcint);
2.6内核采用了可剥夺得调度方式这些宏都不安全。
17、 内核时间变化
1、现在的各个平台的HZ为
Alpha: 1024/1200; ARM : 100/128/200/1000; CRIS: 100; i386: 1000; IA-64:
1024; M68K: 100; M68K-nommu: 50-1000; MIPS: 100/128/1000; MIPS64: 100;
PA-RISC: 100/1000; PowerPC32: 100; PowerPC64: 1000; S/390: 100; SPARC32:
100; SPARC64: 100; SuperH: 100/1000; UML: 100; v850: 24-100; x86-64: 1000.
2、由于HZ的变化,原来的jiffies计数器很快就溢出了,引入了新的计数器jiffies_64
3、#include <linux/jiffies.h>
u64 my_time = get_jiffies_64();
4、新的时间结构增加了纳秒成员变量
struct timespec current_kernel_time(void);
5、他的timer函数没变,新增
void add_timer_on(struct timer_list *timer, int cpu);
6、新增纳秒级延时函数
ndelay();
7、POSIX clocks 参考kernel/posix-timers.c
18、 工作队列(workqueue)
1、任务队列(task queue )接口函数都被取消,新增了workqueue接口函数
struct workqueue_struct *create_workqueue(const char *name);
DECLARE_WORK(name, void (*function)(void *), void *data);
INIT_WORK(struct work_struct *work,
void (*function)(void *), void *data);
PREPARE_WORK(struct work_struct *work,
void (*function)(void *), void *data);
2、申明struct work_struct结构
int queue_work(struct workqueue_struct *queue,
struct work_struct *work);
int queue_delayed_work(struct workqueue_struct *queue,
struct work_struct *work,
unsigned long delay);
int cancel_delayed_work(struct work_struct *work);
void flush_workqueue(struct workqueue_struct *queue);
void destroy_workqueue(struct workqueue_struct *queue);
int schele_work(struct work_struct *work);
int schele_delayed_work(struct work_struct *work, unsigned long
delay);
19、 新增创建VFS的"libfs"
libfs给创建一个新的文件系统提供了大量的API.
主要是对struct file_system_type的实现。
参考源代码:
drivers/hotplug/pci_hotplug_core.c
drivers/usb/core/inode.c
drivers/oprofile/oprofilefs.c
fs/ramfs/inode.c
fs/nfsd/nfsctl.c (simple_fill_super() example)
❸ 线程锁里malloc线程锁linux
c语言双线程锁的例子?
在Linux使用C语言编辑程序使用互斥锁实现两个线程之间同步,一个线程负责从标准输入设备中读取数据,而另一个线程则负责将读入的数据输出到标准输出设备上,当输入“end”时结束该程序。
thread线程可以在linux上用吗?
thread线程是可以在linux上使用的,支持多线程运行。
linux如何停止线程?
杀死线程所在的进程就可以,psaux|grep进程名kill-TERM进程号如果你指的写程序,那就参考manpthread_exit。
《Linux就该这么学》里有相关介绍,建议看看。
linux有没有线程id确认函数?
linuxC中,获取当前进程id函数为getpid();头文件:#include?函数原型:pid_t?getpid(void);函数说明:getpid?()用来取得目前进程的进程id,许多程序利用取到的此值来建立临时文件,?以避免临时文件相同带来的问题。返回值:目前进程的进程id范例#include?#include?main(){????printf(pid=%dn,?getpid());}执行:pid=1494?/*每次执行结果都不一定相同?*/
linux下如何实现两个内核线程之间的通信?
线程间通信就是通过全局变量啊,线程之间没有“通信”的说法吧,不管有几个线程,它们都是在同一个进程地址空间内,都共享同样的内存空间,所以“通信”的说法才多见于进程之间,因为不同的进程才是不同的内存地址空间。进程内的变量每个线程都是可以访问的,是共享的,但是线程之间没有固定的执行顺序,为避免时序上的不同步问题,所以线程之间才会需要同步机制。线程之间的重点就是同步机制。
❹ malloc函数头文件用哪个有的写malloc.h ,有的写stdlib.h ,还有的写alloc.h 。。。。
简单来说, 在Microsoft Visual C++环境下,malloc.h和stdlib.h中都包含了对malloc函数的声明,所以包含任何一个都可以调用malloc函数;而alloc.h是Borland C++环境下的头文件,也是Linux/Unix环境下进行C语言开发的头文件,所以在这些环境下调用malloc函数要包含alloc.h。
❺ 如何在自己的程序中替换linux标准库函数
#include <stdio.h>
#include <string.h>
#include <malloc.h>
// 将strRes中的t替换为s,替换成功返回1,否则返回0。
int StrReplace(char strRes[],char from[], char to[]) {
int i,flag = 0;
char *p,*q,*ts;
for(i = 0; strRes[i]; ++i) {
if(strRes[i] == from[0]) {
p = strRes + i;
q = from;
while(*q && (*p++ == *q++));
if(*q == '\0') {
ts = (char *)malloc(strlen(strRes) + 1);
strcpy(ts,p);
strRes[i] = '\0';
strcat(strRes,to);
strcat(strRes,ts);
free(ts);
flag = 1;
}
}
}
return flag;
}
int main() {
char str[80] = "098123asd098opu";
printf("替换前:%s\n",str);
if(StrReplace(str,"098","33210")) printf("替换后:%s\n",str);
else printf("没有任何替换。\n");
return 0;
}
❻ 在C++中引用malloc的头文件是什么》
Linux版:
malloc(配置内存空间)
相关函数 calloc,free,realloc,brk
表头文件 #include<stdlib.h>
定义函数 void * malloc(size_t size);
函数说明 malloc()用来配置内存空间,其大小由指定的size决定。
返回值 若配置成功则返回一指针,失败则返回NULL。
范例 void p = malloc(1024); /*配置1k的内存*/
其它版的也相差不多