① 如何用单片机实现舞台灯光的自动跟踪
追光灯是运用舞台艺术中不可或缺的重要手段,达到突出重点、塑造人物形象、烘托环境气氛的目的。而单片机降低演出成本,节省人力、物力,完善舞台灯光技术中追光的的功能和自动化的程度。
1、如下图,利用摄像头与主机的串口(USB)连接,系统运行专用驱动软件后,屏幕上显示出活动的视频图像。屏幕的下端建立一个VB应用软件的界面,设置一些命令控件和状态控件,将位置信息通过单片机处理部件传送到电脑追光灯来控制光斑对准演员。下面就该方案的软、硬件的设计作一介绍。
② 51 单片机的智能台灯设计要求
智控台灯,智能家居大肆兴起后的衍生品,智控台灯可以讲将信号接收线埋藏于垂直的灯臂中,无形而有力地将信号放大。黑白分明的利落气质,简洁至上的线条轮廓,让这盏美观实用的台灯可以出现在任意多变的场合。此外,既然拥有了WiFi延长的功能。于是吸取其WiFi控制的思路,赋予它智能化的操作,只要下载一个APP到手机,就能远程控制家中的WiFi与灯光。
智控台灯[1]趋避无语相比独立的小插件,选择了将WiFi延长隐藏于必需品台灯中,有别于传统WiFi延长器生硬突出的天线,凌乱的设计,不堪入目的摆放,而智能台灯将信号接收线埋藏于垂直的灯臂中,无形而有力地将信号放大。
定时开关灯、控制上网时长、开关台灯……一切在指掌中轻松搞定,即使外出度假依然无忧,让人感叹原来科技可以让生活如此便捷。更贴心的是,灯底座侧边,还设置了USB直充插口,不用打开电脑,直接为各种设备充电,更方便了在床头使用。所有的考量,只是为了更便利的使用,从以人为本的设计理念出发,让家看起来更加美观舒适。
纠错
参考资料
③ 基于MCU控制的无极交流调光控制器设计
1 调光控制器设计
在日常生活中,我们常常需要对灯光的亮度进行调节。本调光控制器通过单片机控制双向可控硅的导通来实现白炽灯(纯阻负载)亮度的调整。双向可控硅的特点是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。所以需要在交流电的每个半波期间都要送出触发信号,触发信号的送出时间就决定了灯泡的亮度。
调光的实现方式就是在过零点后一段时间才触发双向可控硅开关导通,这段时间越长,可控硅导通的时间越短,灯的亮度就越低;反之,灯就越亮。
这就要求要提取出交流电压的过零点,并以此为基础,确定触发信号的送出时间,达到调光的目的。
1.1 硬件部分
本调光控制器的框图如下:
控制部分:为了便于灵活设计,选择可多次写入的可编程器件,这里选用的是ATMEL的AT89C51单片机。
驱动部分:由于要驱动的是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。继电器由于是机械动作,响应速度慢,不能满足其需要。可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。所以这里选用的是可控硅。
负载部分:本电路只能控制白炽灯(纯阻负载)的亮度。
1.2 软件部分
要控制的对象是50Hz的正弦交流电,通过光耦取出其过零点的信号(同步信号),将这个信号送至单片机的外中断,单片机每接收到这个同步信号后启动一个延时程序,延时的具体时间由按键来改变。当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。延时越长,亮的时间就越短,灯的亮度越暗(并不会有闪烁的感觉,因为重复的频率为100Hz,且人的视觉有暂留效应)。由于延时的长短是由按键决定的,所以实际上就是按键控制了光的强弱。
理论上讲,延时时间应该可以是0~10ms内的任意值。在程序中,将一个周期均分成N等份,每次按键只需要去改变其等份数,在这里,N越大越好,但由于受到单片机本身的限制和基于实际必要性的考虑,只需要分成大约100份左右即可,实际采用的值是95。
可控硅的触发脉冲宽度要根据具体的光耦结合示波器观察而定,在本设计中取20 μs。程序中使用T1来控制这个时间。
对两个调光按键的处理有两种方式:一种是每次按键,无论时间的长短,都只调整一个台阶(亮或暗);另一种是随按键时间的不同,调整方法不同:短按只调整一个台阶,长按可以连续调整。如前面所述,由于本设计中的台阶数为95(N=95),如果使用前一种方式,操作太麻烦,所以用后者较为合理。
2 各单元电路及说明
2.1 交流电压过零点信号提取
交流电压过零点信号提取电路如图2所示,图中的同步信号就是我们需要的交流电压过零点信号。各部分波形如图3所示。
图中整流后波形中的水平虚线表示光藕P52l输入二极管的门限电压。P521是TLP521的简称,下图是其引脚图。引脚图中器件名的后缀“-1”表示包含一组光藕。
2. 2 主控单元
主控单元以AT89C51单片机为核心,交流电压过零点信号提取电路中产生的同步信号SYN接到AT89C5l的INT0,此信号的下降沿将使AT89-C51产生中断,以此为延时时间的起点。
三个按键只用于控制一路灯:一个为开关,另外两个分别为提高亮度和降低亮度。
74HC573用于输出控制可控硅的导通的触发信号。
220V交流主电源导通区间、同步信号和触发信号的时序关系如图6所示。
图中的阴影部分表示可控硅的导通区间,它的大小决定了灯的亮度。改变延时时间可改变触发信号和同步信号的相位关系,也改变了可控硅的导通区间的大小,达到调光的目的。
2.3 驱动单元
图中,L1_D是单片机输出的触发信号,该信号通过光控可控硅MOC3022去驱动可控硅T435。受控的白炽灯接在Ll和零线(图中未画出)之间。
MOC3022是DIP-6封装的光控可控硅。其1、2脚分别为二极管的正、负极:4、6脚为输出回路的两端;3、5脚不用连接。如图8所示。
T435-400是可控硅,“4”表示主回路电流是4A;“35”表示触发端的最大电流是35mA,一般该端有最大电流的5%就可保证可靠地触发。T435-400外型图如图9所示。
3 程序流程图
4 结束语
本控制器使用了三个开关控制一路灯,主要是为了在教学过程中降低难度。也可改为一个开关控制一路灯,比如短按为开、关,第一次长按为降低亮度,连续的第二次长按为提高亮度等。电路不用改动,只需修改程序即可。
学生通过制作该调光控制器,可以掌握单片机、光藕和可控硅等方面的知识和使用技能,特别是后两者,学生较少接触。由于该调光控制器调光的效果比较好,对提高学生的学习兴趣有很大帮助,教学效果良好。
④ 灯光移位控制程序(单片机程序)
摘要:介绍了单片机实现多路灯光自动控制系统的软、硬件设计。
关键词:单片机自动控制可控硅抗干扰
利用单片机丰富的软硬件资源实现对各种广告牌多路灯光自动控制,与传统的电子线路控制器相比,具有可编程、体积小、控制灵活、操作方便、控制时间可变可调等优点。
我们为呼市邮政局设计并安装了上述单片机多路灯光自动控制系统。下面就该系统的软、硬件设计作介绍。
1系统结构及工作原理
系统整体结构如图1。
图1系统结构
8031单片机是该系统的核心部件,其主要功能:(1)灯光控制的软件编程;(2)干扰信号的处理及复位;(3)光强及时间定时的检测及控制。
单片机的控制程序通过对光强或时间的检测,自动开启(夜间)或关闭(白天)灯光系统,每1路灯光设备与8031内存控制位相对应,单片机通过P3.0(RXD)和P3.1(TXD)多功能口,利用串行通信方式0实现不同控制代码的输出,从而完成了多路灯光设备各种变化的自动循环显示。
28031单片机控制系统功能分析
2.1光强或时间定时的检测及控制
如图2所示,当8031单片机P1.4的控制开关拨到+5V时,系统的开启或关闭由光强控制。这时,当光线较强时(白天),光耦二极管电阻变小,三极管Q1导通,P1.7为低电平;当光线暗时(夜间)光耦二极管变大,三极管Q1截止,P1.7为高电平。8031单片机控制程序每隔一定时间(约5ms)采样P1.7端的状态,然后根据其高低电平选择开启或关闭相应的灯光控制代码发送。图2中与光耦二极管并联的可调电位器可以调整三极管Q1的截止导通状态,从而实现对光控的微调。
图2光耦电路
当P1.4拨至接地状态时,8031单片机程序进入时间控制子程序,8031单片机把内部定时器0设置成日历时钟计数(其初值可以用按钮设置),当程序查询到表格内的开启或关闭初值(表格的初值可通过按钮及数码管显示来输入或修改)与单片机时钟当前值相同时,则自动发送相应的开启或关闭输出控制代码。
2.2双向可控硅控制电路
由于负载一般为大功率器件(电压从几百伏至上千伏,电流从几安培至几十安培),因此,8031单片机工作部分与可控硅触发部分采用MOC3021双向可控硅输出型光电耦合器,图3为1路可控硅触发控制电路。
图3可控硅触发电路
可控硅TR的门极触发电流为50mA,触发电压为2V,则最小触发电压为:
VT=R1,IGT+VGT+VTM=300×0.05+2+3=20V
对应的最小控制角α为:
其中:IGT为可控硅TR的最小触发电流,VGT为可控硅TR的最小触发电压,VTM为MOC3021输出压降(3V),Vp为交流工作电压的峰值。
在使用中发现,当感性负载时,有时会引起可控硅误触发。经分析发现,当感性负载时,由于电压上升率dv/dt较大,在阻断状态下,可控硅的PN结相当于1个电容,当突然受到正向电压、充电电流过门极PN结时,起到了触发电流的作用,造成MOC3021的输出回路可控硅误导通。为此,我们对上述电路进行了修正,如图4所示。在输出回路中加入R2和C1组成RC回路,降低dv/dt。按照MOC3021的技术指标,允许最大的电压上升率dv/dt=10V/s,结温上升时dυ/dt下降,在极端的工作条件下,dv/dt=0.8V/s。
图4修改后的触发电路
R2、R1之和与最小触发电压与可控硅门极电流的关系为:
C1取0.2μF。
同理,在TR输出端加上RC滤波网络,从而使TR输出电压上升率下降。
2.3单片机工作回路的干扰及解决措施
由图1可知,光耦电路利用MOC4021将输入弱信号与输出强信号进行隔离,但在实际运行时,单片机系统仍有较强的干扰信号存在,常常出现死机或程序飞跑现象。分析认为,由于输出的大电流及电压均工作在开关状态,输出高次谐波通过电源回路对8031单片机产生了较大的影响,因此,我们设计了电源滤波电路及硬件复位电路,对电路的干扰进行了有效的控制。其中,硬件复位电路如图5所示。图5中74LS123为双路可再触发单稳态多谐振荡器,通过外接阻容参数,可产生不同宽度的正负脉冲,其真值表如表1。
图5复位电路
表174LS123真值表
输入 输出
deleteAB QQ
LXX LH
XHX LH
XXL LH
HL^
HIH
LH
由表1及图5电路可知:由于1脚A接地,2脚B接8031单片机P1.0,正常运行时,循环程序不断从P1.0发送代码信号,使2脚不断有上升沿出现,因此,13脚保持高电平,则5脚输出低电平,保持8031RESET脚低电平的需要。当程序飞跑或死机时,2脚电位不再变化,使5脚产生一高电平脉冲,促使8031复位,重新启动。
3系统结构特点及应用范围
该系统软硬件均采用模块化结构,1块控制板能控制16路输出,输出信号通过8031串行口RXD及TXD端经74LS164串入并出移位寄存器输出,因此,软件输出代码高达上千路信号,硬件控制板根据需要可以任意扩充,只要电源变压功率相应增大即可。该系统可广泛应用于霓红灯,多路塑料管灯及多路色灯的控制。
另外,系统具有与微机串行口RS-232的通信接口,必要时可以与微机连接,这样,多路灯光控制参数及时间控制参数在微机上可随时修改,使控制变得更加灵活。
作者单位:呼和浩特内蒙古大学电子工程系(010021)
参考文献
1余永权.单片机应用系统的功率接口技术.北京:北京航空航天大学出版社,1992;104~108
2李树华.IBM-PC微机与发光管显示屏的连网通讯.内蒙古大学学报(自然科学版),1993;(4):441~443
3Xicor Inc.New Proct and Applications Information for Design engineers.EDN,1994;39(25):159~160