导航:首页 > 操作系统 > 单片机采集系统材料

单片机采集系统材料

发布时间:2024-12-18 19:53:13

⑴ 基于单片机的温度数据采集系统设计

单片机课程设计任务书

题目:基于单片机的温度数据采集系统设计
一.设计要求
1.被测量温度范围:0~500℃,温度分辨率为0.5℃。
2.被测温度点:4个,每2秒测量一次。
3.显示器要求:通道号1位,温度4位(精度到小数点后一位)。
显示方式为定点显示和轮流显示。
4.键盘要求:
(1)定点显示设定;(2)轮流显示设定;(3)其他功能键。
二.设计内容
1.单片机及电源管理模块设计。
单片机可选用AT89S51及其兼容系列,电源管理模块要实
现高精密稳压输出,为单片机及A/D转换器供电。
2.传感器及放大器设计。
传感器可以选用镍铬—镍硅热电偶(分度号K),放大器要实现热电偶输出的mV级信号到A/D输入V级信号放大。
3.多路转换开关及A/D转换器设计。
多路开关可以选用CD4052,A/D可选用MC14433等。
4.显示器设计。
可以选用LED显示或LCD显示。
5.键盘电路设计。
实现定点显示按键;轮流显示按键;其他功能键。
6.系统软件设计。
系统初始化模块,键盘扫描模块,显示模块,数据采集模块,标度变换模块等。

引言:
在生产和日常生活中,温度的测量及控制十分重要,实时温度检测系统在各个方面应用十分广泛。消防电气的非破坏性温度检测,大型电力、通讯设备过热故障预知检测,各类机械组件的过热预警,医疗相关设备的温度测试等等都离不开温度数据采集控制系统。
随着科学技术的发展,电子学技术也随之迅猛发展,同时带动了大批相关产业的发展,其应用范围也越来越广泛。近年来单片机发展也同样十分迅速,单片机已经渗透到工业、农业、国防等各个领域,单片机以其体积小,可靠性高,造价低,开发周期短的特点被广泛推广与应用。传统的温度采集不仅耗时而且精度低,远不能满足各行业对温度数据高精度,高可靠性的要求。温度的控制及测量对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到重要作用。在单片机温度测量系统中关键是测量温度,控制温度和保持温度。温度测量是工业对象的主要被控参数之一。本此题目的总体功能就是利用单片机和热敏原件实现温度的采集与读数,利用五位LED显示温度读数和所选通道号,实现热电转化,实现温度的精确测量。本设计是以Atmel公司的AT89S51单片机为控制核心,通过MC14433模数转换对所测的温度进行数字量变化,且通过数码管进行相应的温度显示。采用微机进行温度检测,数字显示,信息存储及实时控制,对于提高生产效率和产品质量、节约能源等都有重要作用。
目录:
一、系统总体功能及技术指标的描述........................................ 5
二、各模块电路原理描述............................................................. 5
2.1单片机及电源模块设计...................................................... 5
2.2、AT89S51引脚说明.......................................................... 7
2.3、数据采集模块设计........................................................ 11
2.4、多路开关......................................................................... 12
2.5、放大器............................................................................. 15
2.6、A/D转换器..................................................................... 16
2.7、显示器设计..................................................................... 21
2.8、键盘电路设计................................................................. 22
2.9、电路总体设计图........................................................... 22
三、软件流程图 ...................................................................... 24
四、程序清单.............................................................................. 25
五、设计总结及体会.................................................................... 31
六、参考资料................................................................................ 32

一、系统总体功能及技术指标的描述
1. 系统的总体功能:
温度数据采集系统,实现温度的采集与读书,利用五位LED显示温度读数和所选通道号,实现热电转化的原理过程。
被测量温度范围:0~500℃,温度分辨率为0.5℃。被测温度点4个,每2秒测量一次。显示器要求:通道号1位,温度4位(精度到小数点后一位)。显示方式为定点显示和轮流显示,可以通过按键改变显示方式。
2. 技术指标要求:
1.被测量温度范围:0~500℃,温度分辨率为0.5℃。
2.被测温度点:4个,每2秒测量一次。
3.显示器要求:通道号1位,温度4位(精度到小数点后一位)。
显示方式为定点显示和轮流显示。
4.键盘要求:
(1)定点显示设定;(2)轮流显示设定;(3)其他功能键。
二、各模块电路原理描述
2.1单片机及电源模块设计
如图所示为AT89S51芯片的引脚图。兼容标准MCS-51指令系统的AT89S51单片机是一个低功耗、高性能CHMOS的单片机,片内含4KB在线可编程Flash存储器的单片机。它与通用80C51系列单片机的指令系统和引脚兼容。
AT89S51单片机片内的Flash可允许在线重新编程,也可用通用非易失性存储编程器编程;片内数据存储器内含128字节的RAM;有40个引脚,32个外部双向输入/输出(I/O)端口;具有两个16位可编程定时器;中断系统是具有6个中断源、5个中断矢量、2级中断优先级的中断结构;震荡器频率0到33MHZ,因此我们在此选用12MHZ的晶振是比较合理的;具有片内看门狗定时器;具有断电标志POF等等。AT89S51具有PDIP、TQFP和PLCC三种封装形式[8]。

图5.1-1 AT89S51引脚图

上图就是PDIP封装的引脚排列,下面介绍各引脚的功能。
2.2、AT89S51引脚说明
P0口:8位、开漏级、双向I/O口。P0口可作为通用I/O口,但须外接上拉电阻;作为输出口,每各引脚可吸收8各TTL的灌电流。作为输入时,首先应将引脚置1。P0也可用做访问外部程序存储器和数据存储器时的低8位地址/数据总线的复用线。在该模式下,P0口含有内部上拉电阻。在FLASH编程时,P0口接收代码字节数据;在编程效验时,P0口输出代码字节数据(需要外接上拉电阻)。
P1口:8位、双向I/0口,内部含有上拉电阻。P1口可作普通I/O口。输出缓冲器可驱动四个TTL负载;用作输入时,先将引脚置1,由片内上拉电阻将其抬到高电平。P1口的引脚可由外部负载拉到低电平,通过上拉电阻提供电流。在FLASH并行编程和校验时,P1口可输入低字节地址。在串行编程和效验时,P1.5/MO-SI,P1.6/MISO和P1.7/SCK分别是串行数据输入、输出和移位脉冲引脚。
P2口:具有内部上拉电阻的8位双向I/O口。P2口用做输出口时,可驱动4各TTL负载;用做输入口时,先将引脚置1,由内部上拉电阻将其提高到高电平。若负载为低电平,则通过内部上拉电阻向外部输出电流。CPU访问外部16位地址的存储器时,P2口提供高8位地址。当CPU用8位地址寻址外部存储时,P2口为P2特殊功能寄存器的内容。在FLASH并行编程和校验时,P2口可输入高字节地址和某些控制信号。
P3口:具有内部上拉电阻的8位双向口。P3口用做输出口时,输出缓冲器可吸收4各TTL的灌电流;用做输入口时,首先将引脚置1,由内部上拉电阻抬位高电平。若外部的负载是低电平,则通过内部上拉电阻向输出电流。在与FLASH并行编程和校验时,P3口可输入某些控制信号。P3口除了通用I/O口功能外,还有替代功能,如表5.3-1所示。

表5.3-1 P3口的替代功能

引脚

符号

说明

P3.0

RXD

串行口输入

P3.1

TXD

串行口输出

P3.2

/INT0

外部中断0

P3.3

/INT1

外部中断1

P3.4

T0

T0定时器的外部的计数输入

P3.5

T1

T1定时器的外部的计数输入

P3.6

/WR

外部数据存储器的写选通

P3.7

/RD

外部数据存储器的读选通

RST:复位端。当振荡器工作时,此引脚上出现两个机器周期的高电平将系统复位。
ALE/ :当访问外部存储器时,ALE(允许地址锁存)是一个用于锁存地址的低8位字节的书粗脉冲。在Flash 编程期间,此引脚也可用于输入编程脉冲()。在正常操作情况下,ALE以振荡器频率的1/6的固定速率发出脉冲,它是用作对外输出的时钟,需要注意的是,每当访问外部数据存储器时,将跳过一个ALE脉冲。如果希望禁止ALE操作,可通过将特殊功能寄存器中位地址为8EH那位置的“0”来实现。该位置的“1”后。ALE仅在MOVE或MOVC指令期间激活,否则ALE引脚将被略微拉高。若微控制器在外部执行方式,ALE禁止位无效。
:外部程序存储器读选取通信号。当AT89S51在读取外部程序时, 每个机器周期 将PSEN激活两次。在此期间内,每当访问外部数据存储器时,将跳过两个信号。
/Vpp:访问外部程序存储器允许端。为了能够从外部程序存储器的0000H至FFFFH单元中取指令,必须接地,然而要注意的是,若对加密位1进行编程,则在复位时,的状态在内部被锁存。
执行内部程序应接VCC。不当选择12V编程电源时,在Flash编程期间,这个引脚可接12V编程电压。
XTAL1:振荡器反向放大器输入端和内部时钟发生器的输入端。
XTAL2:振荡器反相放大器输出端[9]。

电源模块设计
在影响单片机系统可靠性的诸多因素中,电源干扰可谓首屈一指,据统计,计算机应用系统的运行故障有90%以上是由电源噪声引起的。为了提高系统供电可靠性,交流供电应采用交流稳压器,防止电源的过压和欠压,直流电源抗干扰措施有采用高质量集成稳压电路单独供电,采用直流开关电源,采用DC-DC变换器。本次设计决定采用MAXim公司的高电压低功耗线性变换器MAX 1616作为电压变换,采用该器件将输入的24V电压变换为5V电压,给外围5V的器件供电。MAX1616具有如下特点:
1.4~28V电压输入范围。
2.最大80uA的静态工作电流。
3.3V/5V电压可选输出。
4.30mA输出电流。
5.2%的电压输出精度。
电源管理模块电路图如下:

本电路采用该器件将输入的24V电压变成5V电压,给外围5V的器件供电,其中二极管D1是保护二极管,防止输入电压接反可能带来的对电路的影响和破坏。

⑵ 需要用51单片机做一个数据采集系统,但是要求采样频率达到至少每秒2000次以上,请问51单片机可以做到么

肯定要速度快的单片机,比如带ADC的STC12单片机,用定时器设置好每秒中断2000次,每次启动ADC转换一次,这样就得到数据了。

当然要存储2000个数据还是问题,如果是8bit的结果,那需要2000字节,12bit结果要4000字节。所以要求单片机本身有很大的RAM或者要扩展RAM才行。但STC12内部才1024字节的RAM,肯定不够用,所以这时要用STC90C58AD了,4096字节的RAM。

如果用C8051F单片机,那更简单。比如C8051F的ADC0是100ksps,就是说连续转换时每秒能采样100000个数据,转换2000个是小菜一碟,只要设置好定时器以0.5毫秒触发一次ADC转换,再设置好ADC中断,这样1秒采集2000个数据没问题。

⑶ 单片机如何进行数据采集

对于液压设备中的8个待测参数选用相应的传感器来来检测,试验时选取应变式传感器作为测试现场的工具。这些选用的检测元件输出都是标准的4-20mA微弱的电流信号,电流信号又经过由LM324组成的放大转换电路转换成0-5V的电压信号输入到C8051F020的模拟输入端,如图2所示,经内部集成的A/D转换器转换成相应的数字量。C8051F020将8路采样值作为液压设备现场的状况存入相应的内存单元。

3.2 LCD显示

为了使数据采集系统小巧美观,同时又获得较高的性价比,选用德彼克公司生产的DMF-50174蓝屏液晶显示器,该显示器是320×240点阵式液晶,图形和文本都可以显示。显示驱动控制芯片采用EPSON 公司的一种高性能LCD 控制器SED1335。硬件电路采用间接接法,如图3所示。用单片机的P5.0~P5.7口作为SED1335的DB0~DB7数据总线的输入通道。P4.5作为SED1335的片选信号, 配合地址信号A0实现SED1335 通过数据总线接收来自单片机的指令和数据。当A 0= 0, P4.6(WR)=0,P4.7(RD)= 1时, 实现指令的写入和从SED1335 中读取数据。当A 0= 1, P4.6(WR)= 0, P4.7(RD)=1时, 则是显示数据的写入,该功能通过软件实现。

3.3 数据通讯

单片机C8051F020的TX0、RX0及P0.2通过MAX485与上位机相连,进行串行通信,如图3所示。P0.2控制MAX485的状态或发送,用软件控制。RX0为单片机的串行输入端,接收上位机通过MAX485向单片机发送的数据。TX0为单片机的串行输出端,通过MAX485发送给上位机。

4 系统软件设计

4.1 软件设计总体上由两部分组成:一部分为单片机C8051F020

主程序设计,一部分为LCD液晶显示程序设计。由于用C语言编程可以降低程序的复杂度,提高程序的可读性和可修改性,所以本软件采用C51进行编程,keil μVision2编译器进行编译。

⑷ 51单片机的温度采集系统设计

第一章 确定系统功能与性能

本系统的功能主要有数据采集、数据处理、输出控制。能对0~1000 �0�2c范围内的各种电加热炉的温度进行精密测量,同时,四位LED显示器直接跟踪显示被控对象的温度值,准确度高,显示清晰,稳定可靠,使用方便(在具体设计编程、调试过程中,为了调试方便,编程把温度范围设在0~100 �0�2c)。

本系统的原理框图如下图所示。

数据采集部分能完成对被测信号的采样,显示分辨率0.1�0�2c,测量精度0.1�0�2c,控制精度0.1�0�2c,可以实现采集信号的放大及A/D转换,并自动进行零漂校正,同时按设定值、所测温度值、温度变化速率,自动进行FID参数自整定和运算,并输出0~10mA控制电流,配以主回路实现温度的控制。数据处理分为预处理、功能性处理、抗干扰等子功能。输出控制部分主要是数码管显示控制。

第二章 确定系统基本结构及硬件设计

本单片机应用系统结构是以单片机为核心外部扩展相关电路的形式。确定了系统中的单片机、存储器分配及输入/输出方式就可大体确定出单片机应用系统的基本组成。

1)单片机选用MCS-51系统的8031

8031是INTEL公司MCS-51系列单片机中最基本的产品,它采用INTEL公司可靠的CHMOS工艺技术制造的高性能8位单片机,属于标准的MCS-51的HCMOS产品。它结合了HMOS的高速和高密度技术及CHMOS的低功耗特征,标准MCS-51单片机的体系结构和指令系统。

8031内置中央处理单元、128字节内部数据存储器RAM、32个双向输入/输出(I/O)口、2个16位定时/计数器和5个两级中断结构,一个全双工串行通信口,片内时钟振荡电路。但80C31片内并无程序存储器,需外接ROM。

此外,8031还可工作于低功耗模式,可通过两种软件选择空闲和掉电模式。在空闲模式下冻结CPU而RAM定时器、串行口和中断系统维持其功能。掉电模式下,保存RAM数据,时钟振荡停止,同时停止芯片内其它功能。8031有PDIP(40pin)和PLCC(44pin)两种封装形式。

主要功能特性:

· 标准MCS-51内核和指令系统

· 外部程序存储器ROM地址空间64kB

· 32个可编程双向I/O口

· 128x8bit内部RAM(可扩充64kB外部存储器)

· 2个16位可编程定时/计数器

· 时钟频率3.5-16MHz

· 5个中断源

· 5.0V工作电压

· 全双工串行通信口

· 布尔处理器

· 2层优先级中断结构

· 兼容TTL和CMOS逻辑电平

· PDIP(40)和PLCC(44)封装形式

阅读全文

与单片机采集系统材料相关的资料

热点内容
一户一档怎么建文件夹 浏览:144
如何换到国外的服务器免费 浏览:852
早期电影app有什么 浏览:352
安卓手机用什么类型的充电器 浏览:144
php智能家居 浏览:176
安卓手机视频通话时如何录音 浏览:104
php比较字符串区分大小写 浏览:652
怎么用泡沫海绵做解压锤子 浏览:771
phpstruts2 浏览:463
洋葱应用源码 浏览:230
个税app单子哪里拉 浏览:289
写app要什么软件 浏览:973
邮储银行已加密怎么解除 浏览:79
游戏泰拉瑞亚如何开服务器 浏览:524
javatailf 浏览:653
安卓手机解压rar用什么解压方式 浏览:514
游戏怎么在抖音上直播安卓版 浏览:17
作者自己的app叫什么 浏览:324
java杀死进程 浏览:32
分析服务器是什么 浏览:909