1. android 传感器使用的时候需要校准吗
什么系统的?安卓2.x才有校准功能,可以校准重力传感器和触摸偏移。
安卓4.x系统的都是已经校准好的,要重新校准得返厂,不支持个人自己校准。
2. 将来iPhone或Android设备是否可能配备全画幅相机传感器呢
典型的手机相机传感器1/40-1/50全框的面积传感器(如果你知道你的相机或手机的“作物因素”,一个线性值基于传感器的对角线尺寸,平方了解实际的物理差异大小)。那么,一个典型的智能手机应该在哪里安装传感器呢?虽然传感器本身的活动成像区域是36mm x 24mm,但它将会比这更大,因为所有的传感器芯片都比它们的成像区域大一点。
手机上最大的传感器,来自诺基亚808 PureView的1/1.2”传感器,大约是一个全帧传感器的1/10.5大小。这也使得这款手机如此之厚——在摄像头处有18毫米——一般人不会买。如今,典型的高端智能手机厚度为7 - 9毫米。
这在很大程度上说明了试图将智能手机变成一款真正的相机所面临的许多问题。简而言之,相机是一个比智能手机更棘手的问题。在建造任何设备时,该设备的形式必须由其主要功能的需求决定。困难的部分。
智能手机根本就不是手机,而是一台袖珍电脑。这就是该设备设计背后的驱动力。当您添加麦克风、扬声器和蜂窝调制解调器外设时,它可能是带有正确软件的电话。就像个人电脑一样。相机也一样。在你的智能手机(或个人电脑)上添加一两个售价20美元的摄像模块,配上合适的软件,它就变成了相机。但所有这些附加功能都保留了智能手机作为一款小巧、触控界面的袖珍电脑的基本特性。
3. Android手机自带的惯性传感器(陀螺仪、加速度计之类的)精度高吗
精度还可以的。
传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。
4. android 判断支持哪些传感器
Android中判断手机是否支持传感器,可以通过SensorManager这个类来获取手机所有的传感器列表,如下代码:
package com.example.testsensor;
import java.util.List;
import android.app.Activity;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;
public class DemoSensorActivity extends Activity {
private Button button;
private TextView show;
private SensorManager sm;
private StringBuffer str;
private List<Sensor> allSensors;
private Sensor s;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
button = (Button) findViewById(R.id.button);
show = (TextView) findViewById(R.id.show);
button.setOnClickListener(new ButtonListener());
sm = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
allSensors = sm.getSensorList(Sensor.TYPE_ALL);// 获得传感器列表
}
class ButtonListener implements OnClickListener {
public void onClick(View v) {
str = new StringBuffer();
str.append("该手机有" + allSensors.size() + "个传感器,分别是:\n");
for (int i = 0; i < allSensors.size(); i++) {
s = allSensors.get(i);
switch (s.getType()) {
case Sensor.TYPE_ACCELEROMETER:
str.append(i + "加速度传感器");
break;
case Sensor.TYPE_GYROSCOPE:
str.append(i + "陀螺仪传感器");
break;
case Sensor.TYPE_LIGHT:
str.append(i + "环境光线传感器");
break;
case Sensor.TYPE_MAGNETIC_FIELD:
str.append(i + "电磁场传感器");
break;
case Sensor.TYPE_ORIENTATION:
str.append(i + "方向传感器");
break;
case Sensor.TYPE_PRESSURE:
str.append(i + "压力传感器");
break;
case Sensor.TYPE_PROXIMITY:
str.append(i + "距离传感器");
break;
case Sensor.TYPE_TEMPERATURE:
str.append(i + "温度传感器");
break;
default:
str.append(i + "未知传感器");
break;
}
}
show.setText(str);
}
}
}
5. Android 外置传感器通过USB连接数据传送的问题
用arino很容易,安卓与arino之间用串口通信,安卓端用Usb类库,arnio端用Serial库。
我也在看这类,我看到有USB对SPI,I2C接口的转换器(某宝有卖),理论上,用这个,可以实现安卓直接与SPI,I2C接口传感器通讯,但这个转换器成本应该高过一块arino板了。而且不具备AD和DA功能,所以,建议还是连接arino后,用arino来控制传感器吧。很多简单的工作,让arino来完成就好了。把arino当成一个串口通讯的usb传感器。
6. 求安卓下所有传感器的简介
1 加速度传感器
加速度传感器又叫G-sensor,返回x、y、z三轴的加速度数值。
该数值包含地心引力的影响,单位是m/s^2。
将手机平放在桌面上,x轴默认为0,y轴默认0,z轴默认9.81。
将手机朝下放在桌面上,z轴为-9.81。
将手机向左倾斜,x轴为正值。
将手机向右倾斜,x轴为负值。
将手机向上倾斜,y轴为负值。
将手机向下倾斜,y轴为正值。
加速度传感器可能是最为成熟的一种mems产品,市场上的加速度传感器种类很多。
手机中常用的加速度传感器有BOSCH(博世)的BMA系列,AMK的897X系列,ST的LIS3X系列等。
这些传感器一般提供±2G至±16G的加速度测量范围,采用I2C或SPI接口和MCU相连,数据精度小于16bit。
2 磁力传感器
磁力传感器简称为M-sensor,返回x、y、z三轴的环境磁场数据。
该数值的单位是微特斯拉(micro-Tesla),用uT表示。
单位也可以是高斯(Gauss),1Tesla=10000Gauss。
硬件上一般没有独立的磁力传感器,磁力数据由电子罗盘传感器提供(E-compass)。
电子罗盘传感器同时提供下文的方向传感器数据。
3 方向传感器
方向传感器简称为O-sensor,返回三轴的角度数据,方向数据的单位是角度。
为了得到精确的角度数据,E-compass需要获取G-sensor的数据,
经过计算生产O-sensor数据,否则只能获取水平方向的角度。
方向传感器提供三个数据,分别为azimuth、pitch和roll。
azimuth:方位,返回水平时磁北极和Y轴的夹角,范围为0°至360°。
0°=北,90°=东,180°=南,270°=西。
pitch:x轴和水平面的夹角,范围为-180°至180°。
当z轴向y轴转动时,角度为正值。
roll:y轴和水平面的夹角,由于历史原因,范围为-90°至90°。
当x轴向z轴移动时,角度为正值。
电子罗盘在获取正确的数据前需要进行校准,通常可用8字校准法。
8字校准法要求用户使用需要校准的设备在空中做8字晃动,
原则上尽量多的让设备法线方向指向空间的所有8个象限。
手机中使用的电子罗盘芯片有AKM公司的897X系列,ST公司的LSM系列以及雅马哈公司等等。
由于需要读取G-sensor数据并计算出M-sensor和O-sensor数据,
因此厂商一般会提供一个后台daemon来完成工作,电子罗盘算法一般是公司私有产权。
4 陀螺仪传感器
陀螺仪传感器叫做Gyro-sensor,返回x、y、z三轴的角加速度数据。
角加速度的单位是radians/second。
根据Nexus S手机实测:
水平逆时针旋转,Z轴为正。
水平逆时针旋转,z轴为负。
向左旋转,y轴为负。
向右旋转,y轴为正。
向上旋转,x轴为负。
向下旋转,x轴为正。
ST的L3G系列的陀螺仪传感器比较流行,iphone4和google的nexus s中使用该种传感器。
5 光线感应传感器
光线感应传感器检测实时的光线强度,光强单位是lux,其物理意义是照射到单位面积上的光通量。
光线感应传感器主要用于Android系统的LCD自动亮度功能。
可以根据采样到的光强数值实时调整LCD的亮度。
6 压力传感器
压力传感器返回当前的压强,单位是百帕斯卡hectopascal(hPa)。
7 温度传感器
温度传感器返回当前的温度。
8 接近传感器
接近传感器检测物体与手机的距离,单位是厘米。
一些接近传感器只能返回远和近两个状态,
因此,接近传感器将最大距离返回远状态,小于最大距离返回近状态。
接近传感器可用于接听电话时自动关闭LCD屏幕以节省电量。
一些芯片集成了接近传感器和光线传感器两者功能。
下面三个传感器是Android2新提出的传感器类型,目前还不太清楚有哪些应用程序使用。
9 重力传感器
重力传感器简称GV-sensor,输出重力数据。
在地球上,重力数值为9.8,单位是m/s^2。
坐标系统与加速度传感器相同。
当设备复位时,重力传感器的输出与加速度传感器相同。
10 线性加速度传感器
线性加速度传感器简称LA-sensor。
线性加速度传感器是加速度传感器减去重力影响获取的数据。
单位是m/s^2,坐标系统与加速度传感器相同。
加速度传感器、重力传感器和线性加速度传感器的计算公式如下:
加速度 = 重力 + 线性加速度
11 旋转矢量传感器
旋转矢量传感器简称RV-sensor。
旋转矢量代表设备的方向,是一个将坐标轴和角度混合计算得到的数据。
RV-sensor输出三个数据:
x*sin(theta/2)
y*sin(theta/2)
z*sin(theta/2)
sin(theta/2)是RV的数量级。
RV的方向与轴旋转的方向相同。
RV的三个数值,与cos(theta/2)组成一个四元组。
RV的数据没有单位,使用的坐标系与加速度相同。
7. Android 中有哪些传感器的数据是可以分享的
着作权归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
作者:肥肥鱼
来源:知乎
目前 Android 设备支持的传感器类型如下:
TYPE_ACCELEROMETER 加速度传感器又叫 G-sensor,该数值包含地心引力的影响,单位是 m/s2,测量应用于设备 x 、y、z 轴上的加速度。
将手机平放在桌面上,x 轴默认为0,y 轴默认0,z 轴默认9.81。
将手机朝下放在桌面上,z 轴为-9.81。
将手机向左倾斜,x 轴为正值。
将手机向右倾斜,x 轴为负值。
将手机向上倾斜,y 轴为负值。
将手机向下倾斜,y 轴为正值。
TYPE_AMBIENT_TEMPERATURE 温度传感器,单位是 ℃,返回当前的温度。
TYPE_GAME_ROTATION_VECTOR 用来探测运动而不必受到电磁干扰的影响,因为它并不依赖于磁北极。
TYPE_GEOMAGNETIC_ROTATION_VECTOR 地磁旋转矢量传感器,提供手机的旋转矢量,当手机处于休眠状态时,仍可以记录设备的方位。
TYPE_GRAVITY 重力传感器简称 GV-sensor,单位是 $m/s^2%,测量应用于设备X、Y、Z轴上的重力。在地球上,重力数值为9.8,
TYPE_GYROSCOPE 陀螺仪传感器叫做Gyro-sensor,返回x、y、z三轴的角加速度数据。单位是 radians/second。
TYPE_GYROSCOPE_UNCALIBRATED 未校准陀螺仪传感器,提供原始的、未校准、补偿的陀螺仪数据,用于后期处理和融合定位数据。
TYPE_LIGHT 光线感应传感器检测实时的光线强度,光强单位是lux,其物理意义是照射到单位面积上的光通量。
TYPE_LINEAR_ACCELERATION 线性加速度传感器简称LA-sensor。线性加速度传感器是加速度传感器减去重力影响获取的数据。单位是 m/s2。
TYPE_MAGNETIC_FIELD 磁力传感器简称为M-sensor,返回 x、y、z 三轴的环境磁场数据。该数值的单位是微特斯拉(micro-Tesla),用uT表示。单位也可以是高斯(Gauss),1Tesla=10000Gauss。硬件上一般没有独立的磁力传感器,磁力数据由电子罗盘传感器提供(E-compass)。电子罗盘传感器同时提供方向传感器数据。
TYPE_MAGNETIC_FIELD_UNCALIBRATED 未校准磁力传感器,提供原始的、未校准的磁场数据。
TYPE_ORIENTATION 方向传感器简称为O-sensor,返回三轴的角度数据,方向数据的单位是角度。为了得到精确的角度数据,E-compass 需要获取 G-sensor 的数据,经过计算生产 O-sensor 数据,否则只能获取水平方向的角度。方向传感器提供三个数据,分别为azimuth、pitch和roll:
azimuth: 方位,返回水平时磁北极和 Y 轴的夹角,范围为0°至360°。0°为北,90°为东,180°为南,270°为西。
pitch: x 轴和水平面的夹角,范围为-180°至180°。当 z 轴向 y 轴转动时,角度为正值。
roll: y 轴和水平面的夹角,由于历史原因,范围为-90°至90°。当 x 轴向 z 轴移动时,角度为正值。
TYPE_PRESSURE 压力传感器,单位是hPa(百帕斯卡),返回当前环境下的压强。
TYPE_PROXIMITY 接近传感器检测物体与手机的距离,单位是厘米。一些接近传感器只能返回远和近两个状态,因此,接近传感器将最大距离返回远状态,小于最大距离返回近状态。
TYPE_RELATIVE_HUMIDITY 湿度传感器,单位是 %,来测量周围环境的相对湿度。
TYPE_ROTATION_VECTOR 旋转矢量传感器简称RV-sensor。旋转矢量代表设备的方向,是一个将坐标轴和角度混合计算得到的数据。RV-sensor输出三个数据:
x*sin(theta/2)
y*sin(theta/2)
z*sin(theta/2)
sin(theta/2)是 RV 的数量级。RV 的方向与轴旋转的方向相同。RV 的三个数值,与cos(theta/2)组成一个四元组。
TYPE_SIGNIFICANT_MOTION 特殊动作触发传感器。
TYPE_STEP_COUNTER 计步传感器,用于记录激活后的步伐数。
TYPE_STEP_DETECTOR 步行检测传感器,用户每走一步就触发一次事件。
TYPE_TEMPERATURE 温度传感器,目前已被TYPE_AMBIENT_TEMPERATURE替代。
8. 开发android应用程序怎么调用光传感器
Android手机自带光线传感器,通常我们手机的屏幕自动亮度都是用光线传感器来实现的。该传感器在前置摄像头附近,此外,还有一个距离传感器。本文主要讲解如何使用Android手机的光线传感器。
获得感应器服务
Android开发中要使用光线传感器,需要先获得系统传感器服务Context.SENSOR_SERVICE,获得方法如下:
SensorManager senserManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
获得光线传感器
SensorManager是系统传感器服务,是系统所有传感器的管理器。通过它,我们获得制定类型的传感器,获得光线传感器的方法如下:
详细代码
9. android加速度传感器怎么使用
使用加速度传感器与其他传感器的方法大致相同,通过调用系统API就可以实现。分为以下几步:
1.获取SensorManager
2.使用SensorManager获取加速度传感器
3.创建自定义的传感器监听函数,并注册
4.相对应的,在合适位置实现注销监听器的调用
简单的代码如下:
public class MainActivity extends Activity {
private static final String TAG = "SensorTest";
private SensorManager mSensorManager;
private Sensor mAccelerometer;
private TestSensorListener mSensorListener;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
initViews();
// 初始化传感器
mSensorListener = new TestSensorListener();
mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
}
@Override
protected void onResume() {
super.onResume();
// 注册传感器监听函数
mSensorManager.registerListener(mSensorListener, mAccelerometer, SensorManager.SENSOR_DELAY_UI);
}
@Override
protected void onPause() {
super.onPause();
// 注销监听函数
mSensorManager.unregisterListener(mSensorListener);
}
private void initViews() {
mSensorInfoA = (TextView) findViewById(R.id.sensor_info_a);
}
class TestSensorListener implements SensorEventListener {
@Override
public void onSensorChanged(SensorEvent event) {
// 读取加速度传感器数值,values数组0,1,2分别对应x,y,z轴的加速度
Log.i(TAG, "onSensorChanged: " + event.values[0] + ", " + event.values[1] + ", " + event.values[2]);
}
@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
Log.i(TAG, "onAccuracyChanged");
}
}
}