❶ 基于51单片机的数据采集器ADC0808(含Keil程序和Proteus文件)
系统概述
本系统采用的模块包括AT89C51单片机、LCD1602显示屏以及ADCO808数据转换器。
本系统以AT89C51单片机为主控单元,通过电位器模拟采集信息,利用ADCO808数据转换器将模拟电压值转换为数字电压信号,并在LCD1602显示屏上显示。该数据采集器广泛应用于模拟信号传感器的数据转换,具有广泛的应用前景。
仿真概述
1. 利用LCD1602显示屏展示采集到的数据。
2. 通过电位器模拟采集信号的模拟量,并利用ADCO808数据转换器进行信号转换。
程序设计
使用Keil 51进行程序设计,当打开Proteus时,程序处于默认烧录状态。若未进行烧录,需将程序导入AT89C51单片机中即可运行系统(程序文件为hex后缀)。
❷ 单片机如何实现多路模拟量的数据采集、显示
普通单片机实现多路模拟量的数据采集、显示需要:
外部连接一个多通道输入的ADC芯片,单片机按照一定的周期驱动模拟开关切换到不同的模拟通道,设计模数转换控制器的控制程序,可以进行定团戚时模拟信号采集和显示。
(2)单片机所控制的数据采集器扩展阅读:
单片机基本结构及作用:
1、运算器
运算器由运算部件——算术逻辑单元(Arithmetic & Logical Unit,简称ALU)、累加器和寄存器等几部分组成。ALU的作用是把传来的数据进行算术或逻辑运算,输入来源为两个8位数据,分别来自累加器和数据寄存器。
ALU能完成对这两个数据进行加、减、与、或、比较大小等操作,最后将结果存入累加器。
运算器有两个功能:
执行各种算术运算。
执行各种逻辑运算,并进行逻辑测试,如零值测试或两个值的比较。
运算器所执行全部操作都是由控制器发出的控制信号来指挥的,并且,一个算术操作产生一个运算结果,一个逻辑操作产生一个判决。
2、控制器
控制器由程序计数器、指令寄存器、指令译码器、时序发生器和操作控制器等组成,是发布命令的“决策机构”,即协调和指挥整个微机系统的操作。其主要功能有:
从内存中取出一条指令,并指出下一条指令在内存中的位置。
对指令进行译码和测试,并产生相应的操作控制信号,以便于执行规定的动作。
指挥并控制CPU、内存和输入输出设备之间数据流动的方向。
微处理器内通过内部总线把ALU、计数器、寄存器和控制部分互联,并通过外部总线与外部的存储器、输入输出接口电路联接。外部总线又称为系统总线,分为数据总线键或仿DB、地址总线AB和控制总线CB。通过输入输出接口电路,实现与各种外围设备连接。
3、主要寄存器
累加器A
累加器A是微处理器中使用最频繁的寄存器。在算术和逻辑运算时它有双功能:运算前,用于保存一个操作数;运算后,用于保存所得的和、差或逻辑运算结果。
数据寄存器DR
数据寄存器通过数据总线向存储器和输入/输出设备送(写)或取(读)数据的暂存单元。它可以保存一条正在译码的指令,也可以保存正在送往存储器中存储的一个数据字节等等。
指令寄存器IR和指令译码器ID
指令包括操作码和操作数。
指令寄存器是用来保存当前正在执行的一条指令。当执行一条指令时,先把它从内存中取到数据寄存器中,然后再传送到指令寄存器。
当系统执行给定的指令时,必须对操作码进行译码,以确定所要求的操作,指令译码器就是负责这项工作的。其中,指令寄存器中操作码字段的输出就是指令译码器的输入。
程序计数器PC
PC用于确定下一条指令的地址,以保证程序能够连续地执行下去,因此通常又被称为指令地址计数器。在程序开始执行前必须将程序的第一条指令的内存单元地址(即程序的首地址)送入PC,使它总是指向下一条要执行指令的地址。
地址寄存器AR
地址寄存器用于保存当前CPU所要访问的内存单元或I/O设备的地址。由于内存与CPU之间存在着速度上的差异,所以必须使用地址寄存器来保持地址信息,直到内存读/写操作完成为止。
显然,当CPU向存储器存数据、CPU从内存取数据和CPU从内存读出指令时,都要用到地址寄存器和数据寄存器。同样,如果把外围设备的地址作为内存地址单元来看的话,那么当CPU和外围设备交换信息时稿纤,也需要用到地址寄存器和数据寄存器。
❸ 单片机如何进行数据采集
对于液压设备中的8个待测参数选用相应的传感器来来检测,试验时选取应变式传感器作为测试现场的工具。这些选用的检测元件输出都是标准的4-20mA微弱的电流信号,电流信号又经过由LM324组成的放大转换电路转换成0-5V的电压信号输入到C8051F020的模拟输入端,如图2所示,经内部集成的A/D转换器转换成相应的数字量。C8051F020将8路采样值作为液压设备现场的状况存入相应的内存单元。
3.2 LCD显示
为了使数据采集系统小巧美观,同时又获得较高的性价比,选用德彼克公司生产的DMF-50174蓝屏液晶显示器,该显示器是320×240点阵式液晶,图形和文本都可以显示。显示驱动控制芯片采用EPSON 公司的一种高性能LCD 控制器SED1335。硬件电路采用间接接法,如图3所示。用单片机的P5.0~P5.7口作为SED1335的DB0~DB7数据总线的输入通道。P4.5作为SED1335的片选信号, 配合地址信号A0实现SED1335 通过数据总线接收来自单片机的指令和数据。当A 0= 0, P4.6(WR)=0,P4.7(RD)= 1时, 实现指令的写入和从SED1335 中读取数据。当A 0= 1, P4.6(WR)= 0, P4.7(RD)=1时, 则是显示数据的写入,该功能通过软件实现。
3.3 数据通讯
单片机C8051F020的TX0、RX0及P0.2通过MAX485与上位机相连,进行串行通信,如图3所示。P0.2控制MAX485的状态或发送,用软件控制。RX0为单片机的串行输入端,接收上位机通过MAX485向单片机发送的数据。TX0为单片机的串行输出端,通过MAX485发送给上位机。
4 系统软件设计
4.1 软件设计总体上由两部分组成:一部分为单片机C8051F020
主程序设计,一部分为LCD液晶显示程序设计。由于用C语言编程可以降低程序的复杂度,提高程序的可读性和可修改性,所以本软件采用C51进行编程,keil μVision2编译器进行编译。