导航:首页 > 操作系统 > 单片机pid温度控制

单片机pid温度控制

发布时间:2022-04-22 03:53:15

1. 单片机结合PID算法是如何解决温度的纯滞后问题的

首先系统辨识,观察纯滞后的程度等,然后在算法上做补偿,例如Smith预估器等,也可以通过零极点配置等方式来改善。

2. stm32单片机温度控制pid代码

STM32的 PID和PWM墨水温度控制系统 控制方案: K_SENSOR热电偶作为温度传感器,50w电烙铁作为加温设备作为控制对象,预先设定一个温度值,微处理器为ARM公司... 查看全部>>

3. 51单片机的温度控制系统一定要用到pid算法吗 还有其它方法吗

51单片机的温度控制系统中,比较好的控制算法就pid算法,这是自动控制原理中的经典算法,其它算法控制过程不够理想,过于简单,温度变化波动较大。

4. 单片机PID控制问题

首先弄清楚PID是一种控制算法!!!

1,“如果用单片机恒温可以使温度到达预定值就停止加热,低了就加热,用一个温度传感器反馈,这样算是一个自动控制吗”你这是控制系统,但是效果会非常差,尤其是对于温度控制这种大惯性系统,达到预定值就停止加热,但是由于惯性,温度肯定会继续上升,电炉烧水的时候,水开了,断电之后水还要沸腾一定时间的(沸腾是很消耗能量的,由此可见如果是加热的话温度上升更严重,你也可以自己用温度计试试看);“低了就加热”是同样的道理。如果系统对控制精度有要求,你这样做肯定达不到要求。PID是一种控制算法,相对于其他控制算法来说算是最简单的了。PID能够做到在温度快要达到设定值的时候降低加热功率,让温度上升速度变慢,最终稳定在设定值。如果用你的直接控制,温度会在设定值上下振荡,永远不会停在设定值。
2,一般的控制系统都需要加反馈,以构成闭环控制系统,相对的还有开环控制系统。开环控制系统,举个例子,就是你加热的时候事先计算好大约需要多少热量,然后考虑一下环境影响,计算出加热时间,然后控制加热系统按照你这个时间加热。你觉得这样的系统能够稳定工作吗?环境稍稍有变动就挂了!开环控制系统的特点就是很容易受到环境的影响;闭环控制系统就稳定很多,你用1L水可用,2L水也行,500W电能用,1000W电炉也能用,这就是闭环的优点。
因此,大多数的控制系统都是闭环的,开环很少单独使用,即使用到了也是有闭环的。开环其实也是有优点的,开环在控制系统里面叫做前馈(跟反馈对应的),比如你的系统里面电源电压上升了,加热速度肯定会变快,如果你对电源电压采样,将采样的结果输入到闭环里面,对闭环做一个轻微的修正,控制的精度会更好,这就是开环的优势,它是超前的,能够预知结果(根据地源电压提高就能知道需要降低输出功率了)。

说完这些,你应该明白了,反馈是必需的(前馈也可以要,但是不是必需的),PID不能被取代(除非你用其它更复杂的控制算法)。

5. pic单片机pid控制算法参数整定

我这有51的

#include <stdlib.h>

#include "global_varible.h"

/****************************************************************************
* 模块名: PID
* 描述: PID调节子程序
* 采用PID-PD算法。在偏差绝对值大于△e时,用PD算法,以改善动态品质。
* 当偏差绝对值小于△e时,用PID算法,提高稳定精度。
* PIDout=kp*e(t)+ki*[e(t)+e(t-1)+...+e(1)]+kd*[e(t)-e(t-1)]
*============================================================================
* 入口: 无
* 出口: 无
* 改变: PID_T_Run=加热时间控制
*****************************************************************************/
void PID_Math(void)
{
signed long ee1; //偏差一阶
//signed long ee2; //偏差二阶
signed long d_out; //积分输出

if(!Flag_PID_T_OK)
return;
Flag_PID_T_OK=0;

Temp_Set=3700; //温度控制设定值37.00度

PID_e0 = Temp_Set-Temp_Now; //本次偏差
ee1 = PID_e0-PID_e1; //计算一阶偏差
//ee2 = PID_e0-2*PID_e1+PID_e2; //计算二阶偏差
if(ee1 > 500) //一阶偏差的限制范围
ee1 = 500;
if(ee1 < -500)
ee1 = -500;
PID_e_SUM += PID_e0; //偏差之和
if(PID_e_SUM > 200) //积分最多累计的温差
PID_e_SUM = 200;
if(PID_e_SUM < -200)
PID_e_SUM = -200;

PID_Out = PID_kp*PID_e0+PID_kd*ee1; //计算PID比例和微分输出
if(abs(PID_e0) < 200) //如果温度相差小于1.5度则计入PID积分输出
{
if(abs(PID_e0) > 100) //如果温度相差大于1度时积分累计限制
{
if(PID_e_SUM > 100)
PID_e_SUM = 100;
if(PID_e_SUM < -100)
PID_e_SUM = -100;
}
d_out = PID_ki*PID_e_SUM; //积分输出
if(PID_e0 < -5) //当前温度高于设定温度0.5度时积分累计限制
{
if(PID_e_SUM > 150)
PID_e_SUM = 150;

if(PID_e_SUM > 0) //当前温度高于设定温度0.5度时削弱积分正输出
d_out >>= 1;
}
PID_Out += d_out; //PID比例,积分和微分输出
}
else
PID_e_SUM=0;

PID_Out/=100; //恢复被PID_Out系数放大的倍数
if(PID_Out > 200)
PID_Out=200;
if(PID_Out<0)
PID_Out=0;

if(PID_e0 > 300) //当前温度比设定温度低3度则全速加热
PID_Out=200;
if(PID_e0 < -20) //当前温度高于设定温度0.2度则关闭加热
PID_Out=0;

Hot_T_Run=PID_Out; //加热时间控制输出

PID_e2 = PID_e1; //保存上次偏差
PID_e1 = PID_e0; //保存当前偏差
}
////////////////////////////////////////////////////////////void PID_Math() end.

6. 温度控制用PID实现,用什么单片机好

PID温控并不是多么复杂的算法,所有单片机都可以实现,选51就好,价格便宜,使用的人也多。

7. 基于PID算法的单片机温度控制系统设计(实现制冷效果)

看看我以前回答过的一个问题,或许有帮助。
所谓PID指的是Proportion-Integral-Differential。翻译成中文是比例-积分-微分。
记住两句话:
1、PID是经典控制(使用年代久远)
2、PID是误差控制()
压缩泵转速进行控制:
1、变频器-作为压缩机驱动;2、温度传感器-作为输出反馈。
PID怎么对误差控制,听我细细道来:
所谓“误差”就是命令与输出的差值。比如你希望控制压缩机转速为1500转(“命令电压”=6V),而事实上控制压缩机转速只有1000转(“输出电压”=4V),则误差: e=500转(对应电压2V)。如果泵实际转速为2000转,则误差e=-500转(注意正负号)。
该误差值送到PID控制器,作为PID控制器的输入。PID控制器的输出为:误差乘比例系数Kp+Ki*误差积分+Kd*误差微分。
Kp*e + Ki*∫edt + Kd*(de/dt) (式中的t为时间,即对时间积分、微分)
上式为三项求和(希望你能看懂),PID结果后送入电机变频器或驱动器。
从上式看出,如果没有误差,即e=0,则Kp*e=0;Kd*(de/dt)=0;而Ki*∫edt 不一定为0。三项之和不一定为0。
总之,如果“误差”存在,PID就会对变频器作调整,直到误差=0。
评价一个控制系统是否优越,有三个指标:快、稳、准。
所谓快,就是要使压力能快速地达到“命令值”(不知道你的系统要求多少时间)
所谓稳,就是要压力稳定不波动或波动量小(不知道你的系统允许多大波动)
所谓准,就是要求“命令值”与“输出值”之间的误差e小(不知道你的系统允许多大误差)
对于你的系统来说,要求“快”的话,可以增大Kp、Ki值
要求“准”的话,可以增大Ki值
要求“稳”的话,可以增大Kd值,可以减少压力波动
仔细分析可以得知:这三个指标是相互矛盾的。
如果太“快”,可能导致不“稳”;
如果太“稳”,可能导致不“快”;
只要系统稳定且存在积分Ki,该系统在静态是没有误差的(会存在动态误差);
所谓动态误差,指当“命令值”不为恒值时,“输出值”跟不上“命令值”而存在的误差。不管是谁设计的、再好的系统都存在动态误差,动态误差体现的是系统的跟踪特性,比如说,有的音响功放对高频声音不敏感,就说明功放跟踪性能不好。
调整PID参数有两种方法:1、仿真法;2、“试凑法”
仿真法我想你是不会的,介绍一下“试凑法”
“试凑法”设置PID参数的建议步骤:
1、把Ki与Kd设为0,不要积分与微分;
2、把Kp值从0开始慢慢增大,观察压力的反应速度是否在你的要求内;
3、当压力的反应速度达到你的要求,停止增大Kp值;
4、在该Kp值的基础上减少10%;
5、把Ki值从0开始慢慢增大;
6、当压力开始波动,停止增大Ki值;
7、在该Ki值的基础上减少10%;
8、把Kd值从0开始慢慢增大,观察压力的反应速度是否在你的要求内;

8. 如何用PID算法编程,使单片机通过控制继电器来实现恒温功能。

/***********************************************************************
PID温度控制程序
程序说明:
系统上电后显示 “--温度”
表示需要先设定温度才开始进行温度检测
温度设定完毕后程序才开始进行PID温控
***********************************************************************/
#include <reg52.h>
#include <absacc.h>
#include"DS18B20.H"
#include"PID.H"
#define uchar unsigned char
#define uint unsigned int
unsigned char code tab[]=
{
0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xBF
}
;
/*个位0~9的数码管段码*/
unsigned char code sao[]=
{
0x7f,0xbf,0xdf,0xef
}
;
//扫描码
uchar set=30,keyflag=1 ; //set初始化为30° keyflag为进入温度设定的标志位
//4个按键使用说明
sbit key_out=P1^0 ; //用于温度设定后的退出
sbit key_up=P1^1 ; //设定温度加
sbit key_down=P1^2 ; //设定温度减
sbit key_in=P1^3 ; //在程序的运行中如需要重新设定温度 按下此键才能进入设置模式并且此时是停在温度控制的,按下key_out键后才表示设定完毕
void Show_key();
/***********************************************************/
void delays(unsigned char k)
{
unsigned char i,j ;
for(i=0;i<k;i++)
for(j=0;j<50;j++);
}
/*********************************************************
//数码管显示函数
P0口 作为数据口
P2口的低四位作为扫描口
变量 x表示扫描
d表示是否要加小数点 为1是 为0不加
y表示传递的数值
*********************************************************/
LCD_disp_char(uchar x,bit d,uchar y)
{
P2=0XFF ;
P0=0xFF ;
if(d==0)
P0=tab[y];
else
P0=tab[y]&0x7f ; //与上0x7f表示是否要加小数点
P2=sao[x]; //打开扫描端号

}
/*********************************************************
按键扫描
*********************************************************/
void keyscan(void)
{
if(key_in==0) //按键进入函数
{
delays(10); //延时消抖 (以下同)
if(key_in==0)
{
while(key_in==0)
{
Show_key(); //如果一直按着键不放 就一直显示在当前状态 (以下同)
}
keyflag=1 ; //按键标志位
}
}
/***********************/
if(key_out==0) //按键退出
{
delays(10);
if(key_out==0)
{
while(key_out==0)
{
Show_key();
}
keyflag=0 ;
set_temper=set ;
}
}
/*************************/
if(key_up==0) //设定温度的加
{
delays(10);
if(key_up==0)
{
while(key_up==0)
{
Show_key();
}
if(keyflag==1)
{
set++;
if(set>90) //如果大于90°就不在加
set=90 ;
}
}
}
/*************************/
if(key_down==0) //温度设定的减
{
delays(10);
if(key_down==0)
{
while(key_down==0)
{
Show_key();
}
if(keyflag==1)
{
set--;
if(set<30) //温度减到30°时不在往下减
set=30 ;
}
}
}
}
/*********************************************************************
按键按下时的显示函数
***********************************************************************/
void Show_key()
{
output=1 ;
LCD_disp_char(3,0,10); //显示 -
delays(3);
LCD_disp_char(2,0,10); //显示- (表示温度设定 )
delays(3);
LCD_disp_char(1,0,set/10); //显示温度十位
delays(3);
LCD_disp_char(0,0,set%10); //显示温度个位
delays(3);
}
/*****************************************************************/
void main()
{
unsigned int tmp ;//声明温度中间变量
unsigned char counter=0 ;
PIDBEGIN(); //PID参数的初始化
output=1 ; //关闭继电器输出
while(1)
{
keyscan();
if(keyflag)
{
Show_key(); //显示温度设定
}
else
{
if(counter--==0)
{
tmp=ReadTemperature();//每隔一段时间读取温度值
counter=20 ;
}
LCD_disp_char(3,0,tmp/1000); //显示温度十位
delays(3);
LCD_disp_char(2,1,tmp/100%10); //显示温度个位
//显示小数点
delays(3);
LCD_disp_char(1,0,tmp/10%10); //显示温度小数后一位
delays(3);
LCD_disp_char(0,0,tmp%10);//显示温度小数后二位
delays(3);
P2=0XFF ;
P0=0xff ;
compare_temper(); //比较温度

}
}
}
/**********************************************************************************************************************************************/
//PID算法温控C语言2008-08-17 18:58
#ifndef _PID_H__
#define _PID_H__
#include<intrins.h>
#include<math.h>
#include<string.h>
struct PID
{
unsigned int SetPoint ;
// 设定目标 Desired Value
unsigned int Proportion ;
// 比例常数 Proportional Const
unsigned int Integral ;
// 积分常数 Integral Const
unsigned int Derivative ;
// 微分常数 Derivative Const
unsigned int LastError ;
// Error[-1]
unsigned int PrevError ;
// Error[-2]
unsigned int SumError ;
// Sums of Errors
}
;
struct PID spid ;
// PID Control Structure
unsigned int rout ;
// PID Response (Output)
unsigned int rin ;
// PID Feedback (Input)

sbit output=P1^4;
unsigned char high_time,low_time,count=0 ;
//占空比调节参数
unsigned char set_temper ;
void PIDInit(struct PID*pp)
{
memset(pp,0,sizeof(struct PID)); //PID参数初始化全部设置为0
}
unsigned int PIDCalc(struct PID*pp,unsigned int NextPoint)
{
unsigned int dError,Error ;
Error=pp->SetPoint-NextPoint ;
// 偏差
pp->SumError+=Error ;
// 积分
dError=pp->LastError-pp->PrevError ;
// 当前微分
pp->PrevError=pp->LastError ;
pp->LastError=Error ;
//比例
//积分项
return(pp->Proportion*Error+pp->Integral*pp->SumError+pp->Derivative*dError);
// 微分项
}
/***********************************************************
温度比较处理子程序
***********************************************************/
void compare_temper()
{
unsigned char i ;
//EA=0;
if(set_temper>temper)
{
if(set_temper-temper>1)
{
high_time=100 ; //大于1°不进行PID运算
low_time=0 ;
}
else
{ //在1°范围内进行PID运算
for(i=0;i<10;i++)
{
//get_temper();
rin=s;
// Read Input
rout=PIDCalc(&spid,rin); //执行PID运算
// Perform PID Interation
}
if(high_time<=100) //限制最大值
high_time=(unsigned char)(rout/800);
else
high_time=100;
low_time=(100-high_time);
}
}
/****************************************/
else if(set_temper<=temper) //当实际温度大于设置温度时
{
if(temper-set_temper>0)//如果实际温度大于设定温度
{
high_time=0 ;
low_time=100 ;
}
else
{
for(i=0;i<10;i++)
{
//get_temper();
rin=s ;
// Read Input
rout=PIDCalc(&spid,rin);
// Perform PID Interation
}
if(high_time<100) //此变量是无符号字符型
high_time=(unsigned char)(rout/10000);
else
high_time=0 ;//限制不输出负值
low_time=(100-high_time);
//EA=1;
}
}
}

/*****************************************************
T0中断服务子程序,用于控制电平的翻转 ,40us*100=4ms周期
******************************************************/
void serve_T0()interrupt 1 using 1
{
if(++count<=(high_time))
output=0 ;
else if(count<=100)
{
output=1 ;
}
else
count=0 ;
TH0=0x2f ;
TL0=0xe0 ;
}
void PIDBEGIN()
{

TMOD=0x01 ;
TH0=0x2f ;
TL0=0x40 ;

EA=1 ;
ET0=1 ;
TR0=1 ;

high_time=50 ;
low_time=50 ;
PIDInit(&spid);
// Initialize Structure
spid.Proportion=10 ;
// Set PID Coefficients
spid.Integral=8 ;
spid.Derivative=6 ;
spid.SetPoint=100 ;
// Set PID Setpoint

}
#endif

转自他人程序。

9. 基于单片机的增量式pid恒温控制

改变,也就是一个全新的值,不带记忆性。而像在执行机构为步进电机的控制系统里,你给一次控制量到步进电机,它就保持在那里。当你下一次再输入控制量到步进电机,它就将这一次的控制量叠加上去,也就是说有记忆性。但是如果我的温控系统里面真

10. 单片机用PID控制可控硅,让电烤箱温度恒定的算法请教高手!

pid位置式算法,在温度比设定温度低x度时,用pd,当比设定温度低x度以内,用pid。
可控硅部分,硬件用BTA26或者BT139(看加热器件的功率了),采用过零检测来确定过零点,用单片机的外部中断配合tmer,来控制开关时间。在pd和pid阶段,pid参数可能要用2套参数,自己实验吧,还有,你可以看一下,Ziegler-Nichols参数整定法。
另:
OURAVR上也有个酷贴,很详细的,你可以参考一下,网址再下面:
http://www.ourdev.cn/bbs/bbs_content.jsp?bbs_sn=936512&bbs_page_no=1&search_mode=1&search_text=pid&bbs_id=1000

阅读全文

与单片机pid温度控制相关的资料

热点内容
哪个app听音乐最好 浏览:279
考研英语2真题pdf 浏览:697
烟台编程积木教育环境好不好 浏览:214
python优秀代码 浏览:620
androidtop命令 浏览:455
你平时怎么排解压力 浏览:68
表格中的文件夹怎样设置 浏览:476
em78单片机 浏览:960
splitjava空格 浏览:248
电脑怎么谷歌服务器地址 浏览:515
nx自定义工具启动宏命令 浏览:101
程序员怎么解决无法访问互联网 浏览:303
java访问本地文件 浏览:747
瓦斯琪服务器怎么用 浏览:22
安卓主题用什么app 浏览:747
修改服务器pci地址空间 浏览:321
程序员将来去哪里 浏览:966
虚幻5创建c无法编译 浏览:189
javaweb项目设计 浏览:407
国家反诈app紧急联系人怎么填 浏览:191