㈠ 独立式按键的工作原理
独立按键式直接用I/O口线构成的单个按键电路,其特点式每个按键单独占用一根I/O口线,每个按键的工作不会影响其他I/O口线的状态。独立式按键电路配置灵活,软件结构简单,但每个按键必须占用一个I/O口线,因此,在按键较多时,I/O口线浪费较大,不宜采用。
独立按键的软件常采用查询式结构。先逐位查询没跟I/O口线的输入状态,如某一根I/O口线输入为低电平,则可确认该I/O口线所对应的按键已按下,然后,再转向该键的功能处理程序。
独立键盘理想的波形是按下去时保持低电平,实际上在上升沿和下降沿的过程中(即按键和离键时的一段微小时间)会出现抖动。消抖的方法有两种,一种是通过硬件:在电路上连个电容;另一种是软件消抖,根据经验增加10ms的延时。
(1)单片机独立键盘扩展阅读:
按键分类与输入原理:
按键按照结构原理科分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关灯;另一类是无触点式开关按键,如电气式按键,磁感应按键等。前者造价低,后者寿命长。目前,微机系统中最常见的是触点式开关按键。
在单片机应用系统中,除了复位按键有专门的复位电路及专一的复位功能外,其他按键都是以开关状态来设置控制功能或输入数据的。当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能,键信息输入时与软件结构密切相关的过程。
对于一组键或一个键盘,总有一个接口电路与CPU相连。CPU可以采用查询或中断方式了解有无将按键输入,并检查是哪一个按键按下,将该键号送人累加器,然后通过跳转指令转入执行该键的功能程序,执行完成后再返回主程序。
㈡ 单片机的独立按键
#include<reg51.h> // 4*4 按键+数码管仿真,可以参考。
#define uchar unsigned char
uchar temp;
int key1,key,disbuf;// 此表为 LED 的字模 0 1 2 3 4 5 6 7 8 9 a b c d e f
unsigned char code LED7Code[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x71};
unsigned char ledx[8];
bit s0,s1;
void delay(uchar z)
{
uchar i,j;
for(i=0;i<120;i++)
for(j=0;j<z;j++);
}
void scan() //要是按键了,扫描键盘编码值
{
P1=0xF0;
delay(1);
temp=P1;
switch(temp)
{
case 0xe0: key1=0;
break;
case 0xd0: key1=1;
break;
case 0xb0: key1=2;
break;
case 0x70: key1=3;
break;
}
P1=0x0f;
delay(1);
temp=P1;
switch(temp)
{
case 0x0E: key=key1+0;
break;
case 0x0D: key=key1+4;
break;
case 0x0B: key=key1+8;
break;
case 0x07: key=key1+12;
break;
default : key=-1;
}
if((key1+1)&&(key+1)) disbuf=key;
}
void ejjc() //判断是否按键
{
P1=0xF0;
if(P1!=0xF0) { scan();s0=1;}
else { s0=0; s1=1;}
}
void main()
{
uchar i;
while(1)
{
ejjc();
if(s0==1 && s1==1)
{
s0=0;s1=0;
for(i=0;i<8;i++)
{ ledx[i]=ledx[i+1]; ledx[8]=disbuf; }
}
P0=0xff;
P2=LED7Code[ledx[0]];
P0=0xfe;
delay(5);
P0=0xff;
P2=LED7Code[ledx[1]];
P0=0xfd;
delay(5);
P0=0xff;
P2=LED7Code[ledx[2]];
P0=0xfb;
delay(5);
P0=0xff;
P2=LED7Code[ledx[3]];
P0=0xf7;
delay(5);
P0=0xff;
P2=LED7Code[ledx[4]];
P0=0xef;
delay(5);
P0=0xff;
P2=LED7Code[ledx[5]];
P0=0xdf;
delay(5);
P0=0xff;
P2=LED7Code[ledx[6]];
P0=0xbf;
delay(5);
P0=0xff;
P2=LED7Code[ledx[7]];
P0=0x7f;
delay(5);
}
}
㈢ 单片机中独立键盘和矩阵键盘如何一起使用 请用C语言写个程序说明,谢谢。
这个很好处理呀,比如以下举例,独立+矩阵,实现独立按键相当于类似SHIFT作用的效果。
#include<reg51.h>
#define uchar unsigned char
uchar tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; //0到f
uchar keyval,num;
sbit skey=P1^0; //独立键P1.0
void delay(uchar a)
{
uchar i,j;
for(i=0;i<a;i++)
for(j=0;j<125;j++);
}
uchar kbscan(void) //矩阵键扫描程序
{
unsigned char sccode,recode;
P3=0x0f; //发0扫描,列线输入
if ((P3 & 0x0f) != 0x0f) //有键按下
{
delay(20); //延时去抖动
if ((P3&0x0f)!= 0x0f)
{
sccode = 0xef; //逐行扫描初值
while((sccode&0x01)!=0)
{
P3=sccode;
if((P3&0x0f)!=0x0f)
{
recode=(P3&0x0f)|0xf0;
while((P3&0x0f)!=0x0f);//等待键抬起
return((~sccode)+(~recode));
}
else
sccode=(sccode<<1)|0x01;
}
}
}
return 0; //无键按下,返回0
}
void getkey(void)
{
unsigned char key;
key=kbscan();
if(key==0)
{
return;
}
switch(key)
{
case 0x11:keyval=7;break;
case 0x12:keyval=4;break;
case 0x14:keyval=1;break;
case 0x18:keyval=10;break;
case 0x21:keyval=8;break;
case 0x22:keyval=5;break;
case 0x24:keyval=2;break;
case 0x28:keyval=0;break;
case 0x41:keyval=9;break;
case 0x42:keyval=6;break;
case 0x44:keyval=3;break;
case 0x48:keyval=11;break;
case 0x81:keyval=12;break;
case 0x82:keyval=13;break;
case 0x84:keyval=14;break;
case 0x88:keyval=15;break;
default:keyval=0xff;break;
}
//以下处理独立按键
if(skey==0)
{
if(keyval!=0xff)keyval+=16; //如果独立键按下,键值加16
while(skey==0); //等待独立键释放
}
}
void t0isr() interrupt 1
{
TH0=(65536-10000)/256;
TL0=(65536-10000)%256;
switch(num)
{
case 0:P2=0x01;break;
case 1:P2=0x02;break;
case 2:P2=0x04;break;
case 3:P2=0x08;break;
default:break;
}
if(keyval<16) P0=~tab[keyval]; //独立键未按正常显示
else P0=~(tab[keyval]|0x80); //独立键按下显示+DP
num++;
num&=0x03;
}
main()
{
TMOD=0x01;
TH0=(65536-10000)/256;
TL0=(65536-10000)%256;
TR0=1;
ET0=1;
EA=1;
while(1)
{
getkey();
}
}
㈣ 单片机独立键盘输入数码管显示 使用独立键盘输入,实现按键复用,并在数码管上显示。
这个就两个功能,一个是键盘扫描,二是数码管显示,这样的程序网上一大把,
按键程序
#include<reg51.h>
#define uint unsigned int
#define uchar unsigned char
uchar pre_peyno=16;keyno=16;
void delayms(int x)
{
uchar i;
while(x--)
{
for(i=0;i<120;i++);
}
}
void ked_scan()
{
uchar m;
P2=0x0f;
if(P2&0x0f!=0x0f)
delayms(2);
if(P2&0x0f!=0x0f)
m=P2^0x0f;
switch(m)
{
case1:keyno=0;break;
case2:keyno=1;break;
case4:keyno=2;break;
case8:keyno=3;break;
default:keyno=16;
}
P2=0xf0;
delayms(1);
m=P2>>4^0x0f;
m=m+10;
switch(m)
{
case1:keyno=0;break;
case2:keyno=4;break;
case4:keyno=8;break;
case8:keyno=12;break;
}
}
main()
{
P2=0xff;
while(1)
{
uchar i;
switch(keyno)
{
case0:P2=0x00;break;
case1:P2=0xfe;for(i=0;i<7;i++){P2=_crol_(P2,1);delayms(150);}break;
case2:P2=0x7f;for(i=0;i<7;i++)P2=_cror_(p2,1);delayms(150);}break;
case16:P2=0xff;break;
}
}
数码管程序
#include<reg52.h>
#define uint unsigned int
#define uchar unsigned char
sbit la=P2^7;
sbit wela=P2^6;
unsigned char code num[]=
{0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71};
#define uint unsigned int
void delay(uint x)
{
while(x--);
}
void main()
{
while(1)
{
P0=0xfe;
wela=1;
wela=0;
P0=num[1];
la=1;
la=0;
delay(1000);
P0=0xfd;
wela=1;
wela=0;
P0=num[2];
la=1;
la=0;
delay(1000);
}
}
以上两个程序是参考程序,不过还得根据自己的实际电路改改,不能直接运用。