导航:首页 > 操作系统 > 传感器单片机

传感器单片机

发布时间:2022-05-05 07:09:47

⑴ 传感器怎样与单片机实现连接和控制

灰度传感器有三条线,VCC,GND,和信号线,他信号线输出的是模拟电压,普通的51只能通过电压比较器LM339来辨别两种不同的颜色,但是如果用增强的51就可以用他自带的AD来测。

只需要吧信号线接到增强的51的有AD功能的端口,启动AD来读他的电压就能辨别不同的颜色了。

有各种传感器它们的连接方法不同的,有的信号输出大可以直接连单片机,如LM35可以直接连到单片机的AD转换口。

有的信号小要进行放大后才能到单片机的AD转换口。如果到单片机没有AD转换口,那么还要经过AD转换才能到单片机。当然传感器自己也有各种连接电路。

(1)传感器单片机扩展阅读:

AM2301电容式温湿度传感器+MQ2气体传感器+GP2Y1010AU0F灰尘传感器+HC-SR501人体红外感应模块+光敏电阻传感器模块。

其中人体红外感应模块(开关量)输出端可以直接连接到开发板任何IO端。

其他都是模拟量,如果输出不是数字量,要经过AD转换,不能直接连到单片机开发板上。

⑵ 传感器 单片机什么关系。

带有数据输出的传感器可以通过编程(可以是单片机或电脑)配置一个或多个温度阈值,当到达这个温度时会有相应的引脚输入特定的电平。
带有模拟输入的传感器需要通过模数转换器,单片机将模拟信号转换成数字信号然后输入。

⑶ 传感器与单片机怎么通过电路连接

有各种传感器它们的连接方法不同的,有的信号输出大可以直接连单片机,如LM35可以直接连到单片机的AD转换口。有的信号小要进行放大后才能到单片机的AD转换口。如果到单片机没有AD转换口,那么还要经过AD转换才能到单片机。当然传感器自己也有各种连接电路。

⑷ 传感器与单片机有什么关系

灰度传感器、VCC、GND、信号线共三条线。其它信号线输出为模拟电压。普通的51只能通过电压比较器lm339区分两种不同的颜色,但是如果使用增强型51,它可以用自己的ad来测量。

只需将信号线连接到具有AD功能的增强型51端口,启动AD读取其电压即可区分不同颜色。

传感器种类繁多,其连接方式也各不相同。有些信号输出可以直接连接到单片机,如lm35可以直接连接到单片机的ad转换端口。

有些信号在到达单片机的AD转换口前需要放大。如果没有到单片机的ad转换口,则只有经过ad转换后才能到单片机。当然,传感器本身有各种连接电路。

(4)传感器单片机扩展阅读:

AM2301电容式温湿度传感器+MQ2气体传感器+GP2Y1010AU0F灰尘传感器+HC-SR501人体红外传感器模块+光刻胶传感器模块。

人体红外传感模块的输出端(开关量)可以直接连接到开发板的任意IO端。

其他是模拟量。如果输出不是数字量,则必须经过AD转换,不能直接连接到单片机的开发板上。

⑸ 单片机如何在硬件上与传感器连接

如果考虑抗干扰可用2芯屏蔽线将传感器与单片机连接,其中一根芯线接AD口,另一根芯线在靠近芯片处接地,屏蔽层网线也一同接地。

⑹ DS18B20温度传感器如何与单片机相连接

DS18B20与单片机连接一个IO口就够,只需要满足相应的时序就能读到温度数据。至于1602显示,只要能读到温度数据,将数据转为字符串发送给1602就可以。

该温度传感器是数字传感器,内含处理器芯片,直接输出温度数字信号,单片机采用查询的方式回读数据后进行换算输出。

三通道18B20温度测量数码管显示。-55-+125℃,用1位数码管显示当前通道号,4位数码管显示18B20当前通道温度值,负号位与正温度百位1用同一位数码管显示,该位为0不显示。

(6)传感器单片机扩展阅读:

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

⑺ 单片机与传感原理有多大联系

两者如亲兄弟,不可分割,自动控制要靠传感器来采集信号,而信号靠单片机来控制,处理 输出,来实现自控,
传感器有温度传感器,压力传感器,超声波传感器,扭矩传感器,湿度传感器,载荷传感器,等等,想实现自控,必须由单片机来完成控制,
传感器,自动控制(主要是单片机),计算机,三大领域已经是国家当前最有前途的,迫切发展的三大技术产业.

⑻ 温度传感器怎么与单片机连在一起工作

温度传感器是将非电量转换为电量 。

⑼ 传感器是单片机吗

传感器和单片机不是一会事,传感器是把某种物理里转换成模拟量的器件,单片机是存储器、运算器以及接口电路集成在一起的一种集成电路芯片。

⑽ 有谁知道传感器或者单片机的定义原理

一、传感器的定义

信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。

最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。

进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。

德国和俄罗斯学者认为传感器应是由二部分组成的,即直接感知被测量信号的敏感元件部分和初始处理信号的电路部分。按这种理解,传感器还包含了信号成形器的电路部分。

传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。有两类传感器:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。

有源(a)和无源(b)传感器的信号流程:

无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,传感器将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。

各种物理效应和工作机理被用于制作不同功能的传感器。传感器可以直接接触被测量对象,也可以不接触。用于传感器的工作机制和效应类型不断增加,其包含的处理过程日益完善。

常将传感器的功能与人类5大感觉器官相比拟:
光敏传感器——视觉�
声敏传感器——听觉
气敏传感器——嗅觉 �
化学传感器——味觉
压敏、温敏、流体传感器——触觉

与当代的传感器相比,人类的感觉能力好得多,但也有一些传感器比人的感觉功能优越,例如人类没有能力感知紫外或红外线辐射,感觉不到电磁场、无色无味的气体等。

对传感器设定了许多技术要求,有一些是对所有类型传感器都适用的,也有只对特定类型传感器适用的特殊要求。针对传感器的工作原理和结构在不同场合均需要的基本要求是:

高灵敏度 抗干扰的稳定性(对噪声不敏感) 线性 容易调节(校准简易)
高精度 高可靠性 无迟滞性 工作寿命长(耐用性)
可重复性 抗老化 高响应速率 抗环境影响(热、振动、酸、碱、空气、水、尘埃)的能力
选择性 安全性(传感器应是无污染的) 互换性 低成本
宽测量范围 小尺寸、重量轻和高强度 宽工作温度范围

二、传感器的分类

可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。

根据传感器工作原理,可分为物理传感器和化学传感器二大类
传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。

化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。

有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。

按照其用途,传感器可分类为:
压力敏和力敏传感器 �
位置传感器
液面传感器 �
能耗传感器
速度传感器
� 热敏传感器
加速度传感器
� 射线辐射传感器
振动传感器
� 湿敏传感器
磁敏传感器
� 气敏传感器
真空度传感器
� 生物传感器�

以其输出信号为标准可将传感器分为:
模拟传感器——将被测量的非电学量转换成模拟电信号。�
数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。�
膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。�
开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类:

(1)按照其所用材料的类别分:�
金属�
聚合物�
陶瓷�
混合物�

(2)按材料的物理性质分:
� 导体
� 绝缘体
� 半导体
� 磁性材料�

(3)按材料的晶体结构分:�
单晶
� 多晶
� 非晶材料�

与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:�
(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。�
(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。� (3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。�

现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。下面给出了一些可用于传感器技术的、能够转换能量形式的材料。�

按照其制造工艺,可以将传感器区分为:
集成传感器:用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。�
薄膜传感器:通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。�
厚膜传感器:利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。 �
陶瓷传感器:采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。�

完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。每种工艺技术都有自已的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。

阅读全文

与传感器单片机相关的资料

热点内容
基于单片机的浇花系统设计ppt 浏览:681
卷积码编译码及纠错性能验证实验 浏览:352
请在删除驱动器之前暂停加密什么意思 浏览:785
光催化pdf 浏览:98
java字符串包含某字符 浏览:526
ssm身份认证源码 浏览:466
预排序遍历树算法 浏览:671
加密装置如何打开ping功能 浏览:478
python下载372 浏览:901
u盘子文件夹隐藏 浏览:296
本地误删svn文件夹 浏览:685
海康威视python通道名 浏览:241
如何用app覆盖全部曲库 浏览:602
变异布林源码 浏览:686
表格加密设置打印区域 浏览:437
卡耐基pdf下载 浏览:924
现在最流行的单片机 浏览:88
机顶盒刷机源码 浏览:985
编码pdf下载 浏览:946
隔壁同学app怎么 浏览:301